
t-A165 696 FORMAL PROOF OF CORRESPONDENCE BETWEEN THE
SPECIFICATION OF A HARDWARE NO..(U) ROYAL

SIGNALS AND

RADAR ESTBBLISHNENT NALVERN (ENGLAND) C H PYGOTT
UCLASSIFIED NOV 85 RSRE-858i2 DRIC F/G 9/5 NL

EEEEEEEEEEohEE
EhhhEEEEEEEEEE
EhEEEEEEEEEEEEsoEEEEEEEEEEEsommommommomm

1" 1.0 -

li3i 1111.

L7I.
MICROCOPY RESOLUTION TEST CHART

NA11f)NAt RLIN~AU Or -TANDARIDS 1963

UNLIMITED ~

II I IReport No. 85012

to ROYAL SIGNALS AND RADAR ESTABLISHMENT
0
z If) MALVERN

0

cc

FORMAL PROOF OF CORRESPONDENCE BETWEEN THE
SPECIFICATION OF A HARDWARE MODULE AND ITS

GATE LEVEL IMPLEMENTATION

* Author: C H Pygott

DTIC
FELEC ft

* MAR 24 1986

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE

4' Malvem, Worcestershire.

-~ November 1985

_ UNLIMITED

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report No 85012

FORMAL PROOF OF CORRESPONDENCE BETWEEN THE SPECIFICATION OF A
HARDWARE MODULE AND ITS GATE LEVEL IMPLEMENTATION

Author: DR C H PYGOTT

Date: NOVEMBER 1985

The growing use of digital circuits in safety critical environments and
the cost of correcting mistakes in large scale integrated circuits, both
lead to a requirement for a high level of confidence in the correctness
of the design of micro-electronic elements.

This paper describes a novel application of a general hardware description
language that enables the implementation of a synchronous circuit to be
checked exhaustively against a high level, implementation independent,
specification of its functionality (originally written in a formalism such
as first order predicate calculus). The technique avoids the cost, in
simulation time, usually associated with exhaustive checking.

The method is illustrated by examples written in the design and description
language ELLA: no prior knowledge of ELLA is assumed. Included in the
annexes to this paper are a library of ELLA functions that provide those
facilities required for the validation of circuits, and the translation of
specifications written in the first order predicate calculus language
LCF-LSM into ELLA.

f Accession For
DTIC TAB

Distrib.:,

Copyright 3
C

Controller HMSO London
1965

FORMAL PROOF OF CORRESPONDENCE BETWEEN THE SPECIFICATION OF A
HARDWARE MODULE AND ITS GATE LEVEL IMPLEMENTATION

1 Introduction

Digital electronics are being applied, with increasing frequency, to
safety critical applications. That is, to those applications where the
failure of the digital system will lead to loss of life or serious loss
of property (such as aircraft flight control systems and electronic fund
transfers). It is obviously vital in such applications that the
precise functionality of the system is both known and provable. In
general, a digital system will consist of both hardware and software
elements. This paper will consider the specification and validation of
the hardware elements. The subjects of software specification and
validation are covered elsewhere [1].

In order to know the functionality of a piece of hardware, a formal
description of its operation is required. A description in English,
with a little mathematics, is far too prone to ambiguity and

misinterpretation. It is also necessary to be able to show that any
implementation of the system does indeed correspond to that
specification.

The High Integrity Computing (HIC) section, of the Computing Division
of RSRE, have been working for some time on the general problems of the
specification and verification of hardware systems. Initial results
suggest that precise descriptions of systems can be written, and that
verification of implementation with respect to the specification must
then proceed in a number of discrete steps. It would appear that
correspondence between the 'higher' levels of a description requires the
use of theorem provers and other algebraic methods [2]. Whilst these
algebraic methods could be applied down to the circuit level, it is
believed that this would be undesirable due to the time involved in
algebraic analysis. However at the 'lower' levels, that is closer to
the circuit description, it appears that a more direct approach is
possible, using the existing specification and simulation language, ELLA.

The work to be described developed out of a specific problem. The
HIC section has specified a processor, known as VIPER, for use in safety
critical systems [3]. The operation of VIPER is specified using first
order predicate calculus (specifically Gordon's LCF-LSM [4,5]). By
means of careful engineering design, a circuit diagram was produced that
claimed to be a realisation of that specification, fabricated as a
single UK5000 gate array device [6]. The problem then remained of
showing that the circuit and the specification did indeed correspond.

The normal engineering approach to the problem would be to apply
test programs to a simulation of the design and the specification, and
show that they agree. This approach is adequate for many systems. For
highly safety critical devices, the risk of missing some strange, data
dependent, faults is too serious to be ignored, and so a more formal
testing or analysis method is required. For example, VIPER, which is a
32-bit processor, has some 36 input lines and 200 internal memory
elements, meaning that the device is capable of some 2 to the power 236
different state transitions. Even if it were possible to perform a
million tests per second, the machine would require a testing time
longer than the age of the universe to check them all.

In practice, any

such problem would be partitioned to enable smaller sub-units to be
tested. However, it is usually impractical to test exhaustively any of
these sub-units, and proving that the sub-units can be joined to make a
correct whole is often ignored or assumed to be obvious (which it rarelyis).

As an alternative to the exhaustive testing of the complete processor, a
number of intermediate levels of description have been produced, one of
which is a block diagram of the system. Proof that the various levels of
description between the top-level specification and the block diagram
correspond is achieved by algebraic methods, as described elsewhere [2].
The method used to show that the circuit associated with each block
faithfully implements the specification of that block forms the body of this
paper. Clearly, if the block level description can be proven to be a correct
implementation of the top-level specification, and the circuits for each
block can be proven correct, it can be inferred that the circuit correctly
implements the top-level specification.

The majority of the work in this paper is expressed in the hardware
design and description language ELLA, the main features of which are
described in Annex A. However, as has already been stated, the top levels of
description for VIPER have been written in LCF-LSM, the main features of
which are briefly described in Annex B. In order to allow easy translation
from LCF-LSM to ELLA. the types and functions of LCF-LSM have been modelled
in ELLA. The ELLA equivalents of the LCF-LSM types and functions are
described in Annex C. The text of the ELIA functions is given in Annex E.

In addition to the LCF-LSM library, a library of auxiliary functions has
been produced, as described in Annex D, with the text listed in Annex F.
These two libraries provide the functions used in the rest of this paper and
provide the correct functionality to justify the claims made for the
verification process.

It should be noted that the work described here is only concerned
with functional correctness. It is believed that there already exists a
wide body of knowledge in the CAD field to enable correct physical
implementation of a given circuit to be produced and that timing
analysis and so on are also well understood. The problems of making
hardware fault tolerant or fault detecting (both desirable in safety
critical systems) are also essentially separate from correctness.

2 Outline of the 'Method of Intelligent Exhaustion'

In the Introduction it was shown why it is inconceivable that a
complete system of any complexity should be tested by exhaustion. Given
that the system is broken down into a number of smaller blocks, it is
still probable that exhaustively testing these would take too long to be
practical. Conversely, it could be said that if the system were broken
down into blocks so small that it was possible to test them exhaustively,
there would be so many fragments, that very little advantage would have been
gained.

A simplistic approach to exhaustive testing ignores the fact that in
many cases, not all of the inputs to a system affect the output. For
example, consider a four input multiplexer, that is a device with four

2

data input lines, two control lines and one output. Simplistically, to
exhaustively test such a device all 64 (ie 2 to the power 6) input
states must be examined to ensure they give the correct output, but one
knows from the specification of a multiplexer that when the first data
input is selected, the state of the other 3 data inputs should be
irrelevant to the output. So, if it were possible to indicate which
inputs were irrelevant during a particular test, it would only be
necessary to check that when a particular data input was selected, the
output had the same value. That is, only two tests are need for each

input (input - false, and input - true), or a total of 8 for the whole
multiplexer.

For such a testing strategy to work, the dependence of an output on
an unexpected input (ie one that was believed to be irrelevant under
some particular set of conditions) must be detected and indicated in
some way. This leads to a requirement for a redefinition of boolean
values to incorporate indeterminate states.

The above example is purely combinatorial. The problem of testing a

circuit with memory elements is more complex. In principle, circuits
containing memory elements are tested by 'splitting' the circuit at the
output of the memory, and describing the function with the current

memory state as an explicit input, and the next memory state as an
output. That is the memory element is no longer 'buried' in the

circuit, and the remaining logic can be tested as though it were
combinatorial. This process is illustrated more fully towards the end
of this paper.

3 The use of multi-valued boolean logic

The circuits for VIPER have been tested by the above method, with
the specification and implementation of each block being described in
ELLA [7]. ELLA is a high level logic description language, developed at
RSRE, that allows the designer great freedom in the modelling of data

types. In this case, this is used to enable a complex boolean type to
be created. Some of the facilities of ELLA are outlined in Annex A.
The boolean type used in this paper is:-

TYPE bool - NEW (f I t I x I i I q I z I oc I by).

That is a 'bool' has one of eight values. These are:-

t & f: the normal boolean values of TRUE and FALSE

, x: don't care
i: indeterminate

* q: the state of a memory element that has not been altered
z: tri-state high impedance

oc: open collector output in its "off" state
by: a value used in the library in Annex C only

The difference between "x" and "i" is important. "x" is used either
when specifying a function to indicate that under some set of conditions

the actual value of an output is irrelevant, or is used as the value
applied to those inputs of a function that are believed to be Irrelevantduring some particular test. The value "i" on the other hand is used to

indicate any signal whose value is indeterminate or unknowable. For

3

example, a 2-input NAND gate with "f" and "x" on its inputs should give a
"t" output. Whilst, if the inputs are "t" and "x", the output should be
"i". This is because, with one input at "t" the output of the NAND gate
is the inverse of the other input, but that input is marked as being
irrelevant (which is obviously not true in this case) and so the output
is indeterminate. "i" can be regarded as an error indicator, vhich
shows that some signal depends upon an input that has been marked as
irrelevant or is itself indeterminate.

Returning to the four input multiplexer described in the previous
section, its function can be specified as shown below, with the
corresponding description of the implementation (see also Fig 1). Note
that for the moment the precise definitions of INV NAND3 etc areignored.

SPECIFICATION IMPLEMENTATION

FN MUX4S- FN MUX4I
(bool: a b c d selectl selectO)I (bool: a b c d selectl selectO)

-> bool: I -> bool:
CASE (selectl, selectO) OF BEGIN LET selectObar - INV selectO,

(f,f): a, select0buf - INV select0bar,
(f,t): b, selectlbar - INV selectl,
(t,f): c, selectlbuf - INV selectlbar.
(t,t): d OUTPUT

ELSE i NAND4(NAND3(a,select0barselectlbar)
ESAC. NAND3(b,select0buf,selectlbar)

I NAND3(c,select0bar,selectlbuf)
NAND3(d,select0buf,selectlbuf)I)

I END.

-. The specification (left hand side) says that the output equals input
'a' if selectO - "f" and selectl - "f" , input Ib' if selectO - "t" and
selectl P "f" etc. Note that if either selectO or selectl has a value other
than true or false, the output required cannot be determined and "i" is
delivered. It can be seen that the right hand side describes Fig 1, if INV
is the functional model of an inverter, and NAND3 and NAND4 are the models
of 3 and 4 input NAND gates. It should be noted that the formal parameters
listing the inputs and outputs to the functions are identical (which as
one is the implementation of the other seems reasonable).

As an aside, it should be stated that one of the reasons for using
ELLA in the VIPER work, was that an automated process exists to convert
circuit descriptions such as illustrated by MUX4I above into the
required input formats for a number of CAD systems. Specifically, ELLA
can be used to drive the UK5000 CAD suite.

4 Logical functions applied to multi-valued booleans

Before either the specification of a circuit block or the
description of the circuit elements (ie gates) that will be used to
implement that block, can be written, the basic logical functions
applied to multi-valued logic need to be considered.

4

One of the most basic logical functions is inversion. For the eight
valued 'bool' described earlier, inversion is defined such that the
inverse of true is false, the inverse of false is true, and the inverse
of any other value is indeterminate. That is expressed in ELIA:-

FN NOT - (bool: a) -> bool: CASE a OF t:f, f:t ELSE i ESAC.

The logical operation AND is defined for two 'bool's, such that if
both are true then the result is true, or if either is false the result
is false. All other cases give an indeterminate result. This is
expressed in ELLA as (see comment in Annex A.4.3):-

FN AND - (bool: a b) -> bool:
CASE (a,b) Or (t,t):t, (f,bool):f, (bool,f):f ELSE i ESAC.

The use of the type name 'bool' as a selector means that any 'bool'
value will be accepted. That is "(f,bool):f" means the result is "f" if
the first variable has the value "f", independent of the value of the
second variable. All the other boolean operations can be defined in the
same manner (see Annex E).

5 Specifying and describing the implementation of combinatorial logic

Given the above definitions of the 'bool' type and the logical
operations on that type, the designer must now be able to specify the
operation of some particular circuit block, and describe the
corresponding gate level implementation. For the moment, only
combinatorial logic (ie memory free) will be considered. Note that any
feedback in the circuit has the same effect as a memory element, and so
is not considered in this section.

Whilst writing the specification for a function, the designer is
free to use all the facilities of the language. The only restriction is%
that all combinations of inputs that give indeterminate results, should
deliver "i". For example, in the specification of the multiplexer in the
previous section, when selectO or selectl have some value other than "t" or
"f", the result is "i". This specification is however deficient in one
respect, as if selectO and selectl are both "f" the output is 'a', whatever
'a' happens to be. In particular, should 'a' have the value "q", "z", "x",
"oc" or "by", MUX4S will deliver the same value. A function is required that
will 'pass' true or false values, but give an indeterminate result for all
other inputs. That is:-

FN PASS - (bool: a) -> bool: CASE a OF t:t, f:f ELSE i ESAC.

The first line of the body of MUX4S should therefore more properly be:-

PASS CASE (selectO, selectl) OF etc

The designer may specify that, under some set of conditions, the value
of an output is undefined, and so the implementation can deliver any value
under those circumstances. For example, an ALU may be defined with 'value'
and 'carry' outputs. During addition, both 'value' and 'carry' outputs are
significant, and are so defined. However during logical operations, the
'carry' output is meaningless and so can be specified as having the value
"X". This implies that no other part of the system will examine the
'carry' output, during a logical operation.

5

Given a particular implementation technology, such as 74 series TTL
or UK5000 gate array, a library of functions is required that model the
gates available in that technology. These should be described in terms
of the primitive logic operations on the eight valued 'bool's detailed
earlier. That is a four input NAND gate, NAND4, could be defined as:-

FN NAND4 - (bool: a b c d) -> bool: NOT(a AND b AND c AND d).

The circuit can then be described in terms of these gate library
functions. As the implementation must be made of functions drawn from this
gate library, no other features of the language should be used in the
implementation description.

canIt should be noted that LCF-LSM (and hence the LCF-LSM library in ELLA)
can support a number of types other than 'bool'. These include: 'Inum' being
a positive integer value, 'word(n)' being a fixed length row of (n) 'bool's
and 'boollist' being a dynamic (unconstrained) row of 'bool's (as
described in Annex C).

6 Verification strategy

The verification strategy can be represented diagrammatically as shown
in Fig 2. The TESTVECTOR function generates a series of vectors that are
chosen to cover all possible input conditions to the required function.
The SPEC and CIRCUIT functions are the specification and implementation
descriptions, discussed above. The COMPARE function examines the
output.; of the specification and implementation, and indicates an error
if the two outputs are inconsistent, and the DISPLAY function presents the
current vector number and the result of the comparison, together with any
other information that may be required, to the user. This additional
information would typically be the actual values delivered by SPEC and
CIRCUIT in response to a particular test vector. These five functions are
unique to a particular problem. The requirements of SPEC and CIRCUIT have
already been described and the generation of the others is discussed below:-

6.1 The TESTVECTOR function

I The function TESTVECTOR must deliver a series of vectors, each of which
is a suitable input for the specification and implementation functions,
together with a vector number (used by DISPLAY). The mechanics of making
TESTVECTOR deliver the vectors in sequence will not be discussed here, as it
would be obvious to anyone using the language and examples can be found in
Annexes G and H. However the choice of the vectors is important. They
should be chosen by studying the specification function, such that
all legal combinations of input states are covered, but at the same time,
minimising the total number of test vectors by use of the don't care ("x")
input. For normal boolean inputs, this means that the input states "t" and
"f" must be covered, but for inputs that are expected to be driven from
tr-state sources, the vector must cover the input states "t", "f" and
"z". Similarly, if the input is to be driven from an open-collector source,
the input states "oc" and "f" must be covered. Note that no vector should
include a "q", "i" or "by" value.

For example, from the specification of the four input multiplexer,
MUX4S, it can be seen that the inputs selectO and selectl are always
significant, and so each vector must have either "t" or "f" values

6

for each of these signals. If selectO and selectl both equal "f", then the
ouput depends upon the input 'a' only. So 'a' equal to both true and
false, with 'b' 'c' and 'd' equal to "x" must be examined. Similarly,
with each of the other three values of selectO/selectl, two more significant
vectors can be found. The eight vectors to be produced by TESTVECTOR are
therefore (in the order a, b, c, d, selectl, selectO):-

(f X, x, x, f, f)
(t, x, x, x, f, f)
(X, f, x, X, f, t)
(x, t, x, x, f, t)
(x, x, f, xv t, f)
(x, x, t, x, t, f)
X. (x, x, , f, t, t)

-X X, x, x, to to t)

It is trivial to show that these eight vectors cover all 64 possible

input states and so are equivalent to exhaustive testing and hence
verification.

6.2 The COMPARE function

The COMPARE function requires a new data type 'result' with values
"ok", "xxxbadspec" and "xxxwrongxxx" (these rather strange names were chosen
to be easily spotted in an output listing). That is:-

TYPE result - NEW(ok I xxxbadspec I xxxwrongxxx)

To compare a single output from a specification and implementation, a
comparison function is required, that takes two 'bool's as inputs, and
delivers a 'result'. That is:-

FN COMPBOOL - (bool: spec circuit) -> result:
CASE (spec, circuit) OF

(f, f): ok, (to t): ok,
(q, q): ok, (z, z): ok,
(oc, oc): ok,
(x, bool): ok,
(i, bool): xxxbadspec,
(bi, bool): xxxbadspec

ELSE xxxwrongxxx
ESAC.

That is, if the specification requires a "f", "t", "q", "z" or "oc"
output, and the implementation delivers the same, then the implementation is
consistent with the specification and so COMPBOOL delivers "ok". However, if
the implementation delivers some other value, it is inconsistant with the
specification and hence COMPBOOL delivers "xxxwrongxxx".

If the specification states that the output doesn't matter ("x"), then
COMPBOOL delivers "ok", no matter what value is delivered by the
implementation. The only other values that the specification may have are
"i" and "by", but no specification should ever deliver an indeterminate
value under the conditions being examined (see 6.1 above) and similarly no
function in the library described in the annexes should deliver a value
"by", so if either of these values are found, COMPBOOL delivers the values
"xxxbadspec".

The annexes also contain the descriptions of functions for comparing
'word(n)'s and 'num's, COMPWORD(n) and COMPNUM, which are analogous to
COMPBOOL, in that they operate upon two objects of the appropriate type
and deliver a 'result'.

In general, for circuits which produce more than one output object,
the COMPARE function will consist of a number of COMPBOOL (etc) functions,
each testing a pair of signals from SPEC and CIRCUIT for consistency. The
output from COMPARE is always a single 'result' which should be "ok" if and
only if all the output pairs are consistent. The outputs from the separate
comparison functions are joined using the function COMPJOIN. This acts on
two 'results' and delivers a single 'result'. If both inputs are "ok" the
delivered value is "ok". If either input is "xxxbadspec", then the delivered
value is "xxxbadspec" otherwise the delivered value is "xxxwrongxxx".

For example, if SPEC and CIRCUIT (called "spec" and "circuit") deliver
structures consisting of a 'word4', a 'bool' and a 'num', then COMPARE
is as follows:-

FN COMPARE - ((word4,boolnum): spec circuit) -> result:
(COMPWORD4(spec[l], circuit[l])) COMPJOIN
(COMPBOOL(spec[2], circuit[2])) COMPJOIN
(COMPNUM(spec[3], circuit[3])).

6.3) The DISPLAY function

The purpose of the DISPLAY function is to present the results of the
comparison to the user. As it is not the intention of this paper to
reproduce the whole of the ELLA users guide, the details of running an
ELLA simulation will not be described. It is however important to state that
the simulator has two modes of operation. These are referred to as
"monitor" (MN) and "monitor-changes" (MC).

As was said in the introduction to this section, the minimum information
to be presented to the user is the current vector number and the result of
the comparison (ie the output of COMPARE). A function DISPLAYRES is provided
in Annex D to facilitate this. The mode of DISPLAYRES is:-

FN DISPLAYRES - (result: data, num: vectornum, testselect: displaymode)
-> (num, result, bool):

"data" and "vectornum" are the output of COMPARE and the vector number
from TESTVECTORS, as already described. "displaymode" is a value of type
"testselect" which is used to control the amount of output produced and is
usually passed to DISPLAYRES from the simulator (see Annex F). It has the
values "all", and "failonly". If "displaymode" has the value "all" and the
simulator is run in "monitor" mode, the results of all tests will be printed
However, if "displaymode" is given the value "failonly" and the simulator is
run in "monitor-changes" mode, only the result of the first test, and any
subsequent tests that fail (ie 'result' from COMPARE not "ok") will be
printed.

The outputs of DISPIAYRES are (in order), the printable vector number
and result of COMPARE (both of which should be delivered from DISPLAY) and a
'bool' which is used to control any other DISPLAY... functions that may be
required. That is, if any additional information (such as the responses of
SPEC and CIRCUIT to a particular vector) are also to be printed, in order
to provide the "print-all" or "print-fail-only" facility described above,

8

this data (which may be of types 'bool', 'word(n}' or 'num') must be
controlled in some manner. For each type there exists a display function
(DISPLAYBOOL, DISPLAYWORD(n) and DISPLAYNUM) of the form:-

FN DISPLAYTYPE - (type: data, bool: control) -> type:

The "control" input to these functions is the third output of

DISPLAYRES. So that, if for some circuit, it is required that the values
delivered by SPEC and CIRCUIT, of type 'word3', are to be printed together
with the result of the comparison and the current test number, the DISPLAY
function is:-

FN DISPLAY - (testselect: displaymode, result: data, num: vectornum,
vord3: spec circuit

-> (num, word3, word3, result):
\ vectornumber, spec, circuit, result\

BEGIN LET dr - DISPLAYRES(data, vectornum, displaymode).
OUTPUT (dr[l], DISPAYWORD3(spec, dr[3]),

DISPAYWORD3(circuit, dr[3]),
dr[2]

)
END.

A typical output from the above would therefore be:-

number/3 t f x t f i ok

A complete example of validation of a combinatorial circuit, based on
the multiplexer example in given in Annex G.

7 Verifying circuits containing memory elements

When considering circuits which contain memory elements, the above
verii.cation strategy needs modification because the output of the function
now depends not only upon the inputs, but also upon the current state of the
memory elements. The circuit can be regarded as a finite state machine of
the form shown in Fig 3a. In order to test such a circuit, it is necessary
to control both inputs and the current state of the memory.-This is most
easily achieved by-'splitting' the circuit at the output of the memory
devices and providing the current state of the memory as an explicit input
to the function, as shown in Fig 3b. The effect of the complete circuit can
be obtained by 'rejoining' the memory output to the current state input, as
shown by the dotted line in Fig 3b.

7.1 Modelling memory elements

Before continuing with more details and an example of verifying a
circuit containing memory, the model used for a memory element must be
considered. It has been said earlier that the method of verification by
intelligent exhaustion is only applicable to synchronous circuit, that is
to those circuits that have a single distributed clock that is used to clock
all latches. In order to illustrate the following remarks about latches,
both edge triggered latches (such as 7474 etc) and the latch element in the

9p

UK5000 library will be considered. The UK5000 latch elements are important
as that is the technology in which VIPER was designed, and from which the
testing scheme evolved.

The simplest use of a latch in a synchronous system is as an ungated
temporary store, that is a memory element that samples its input every
clock cycle. For the edge triggered latch in Fig 4.a this means that on
every rising edge of the common-clock, the D-input (data) is sampled and

transfered to the output Q. The UK5000 latch is shown in Fig 4.b has
precisely the same function, however as it is known that all latches in
UK5000 are controlled from the common-clock, this clock input is not
shown.

The second form of memory element is a gated latch, such as shown in I
Fig 4.c. In this circuit the latch will only sample the input data on the
rising edge of common-clock if the gate input is true. By analogy with the

simple latch, the UK5000 gated latch is shown in Fig 4.d. This latch model
has implications for timing and precisely what the method of verification
by intelligent exhaustion can determine about the operation of a circuit.
Consider the circuit shown in Fig 4.c, and the timing associated with the

,* clock gating (as shown in Fig 5). As all latches in the circuit
(potentially) change state on the rising edge of the common-clock, the logic
deriving the gate signal for a particular latch is likely to be in an
unstable state for some time after a rising edge, until it finally settles
into some stable state. Provided this occurs before the falling edge of the
common-clock (as shown in Fig 5.a) this is acceptable. However, if as shown
in Fig 5.b, the gate input is unstable after the falling edge of the
common-clock, it is possible to incorrectly clock the latch. The ELLA
simulator only 'knows' the stable states of the circuit, and so the method
of verification by intelligent exhaustion can only prove that "at some low
enough frequency, the circuit will operate as specified". It is necessary to
use the timing analysis program of the CAD suite used to fabricate the
circuit to determine the maximum frequency at which the circuit operates
correctly. Note that, although not shown, there is a similar assumption that
all data inputs to latches are stable at the next rising edge of
common-clock.

7.2 The latch function

There is a further problem that arises when modelling circuits that
contain memory elements. In the case of combinatorial logic, already
discussed, as well as using the specification and implementation functions
(SPEC and CIRCUIT) for verification purposes, either could be used to model
the circuit function in a simulation of a more complex system. For example,
the design of some system may be too complex to verify as a single entity,
but may be partitioned into a number of separate blocks, the circuits of
which can be verified independently. For formal proof of correctness of the
overall system, algebraic methods must then be used, but informally, the
designer's confidence in the correctness of the complete system can be
increased by simulating it using the SPEC or CIRCUIT functions for the
individual blocks. In practice, as SPEC is always simpler than CIRCUIT,
SPEC would be used for this purpose. When the circuit contains memory
elements this creates a problem as can be illustrated by Fig 3. When the
finite state machine is 'split open' for validation, as shown in Fig 3.b,
one of the outputs delivered must be the state the memory will have after
the next clock cycle, NEXTSTATE, as the specification of a finite state
machine must describe the next state it will go into. This should be

10

compared to the situation when a finite state machine is being simulated,
as shown in Fig 3.a. In this case, the memory must be in the correct state
for the current clock cycle and must only go into NEXTSTATE during the next

'* clock cycle. That is, during verification, the output of the memory element
must be that state it would become on the next cycle, whilst during
simulation the memory does not change state until the next cycle.

This leads to a requirement to 'tell' a memory function vhether it is
being used for validation or simulation. This is done using an object of
type "latchmode" which has the values "validate" or "simulate" for the two
memory uses. The basic memory element is therefore modelled by a function
of mode:-

FN LATCHBOOL - (bool: data gate, latchmode: operation) -> bool:

In verification mode, if "gate" is "f", then the special value "q" is
delivered to indicate the contents of the memory do not change. If "gate" is
"t", then the function delivers the value of "data", provided "data" is
either "t", "f", "q" or "x", otherwise it delivers "i". Any other value of
"gate" means that the output is indeterminate and so leads to "i" being
delivered.

In simulation mode, if "gate" is "f", then the next value delivered by
the function will be the same as the current value. If "gate" is "t", then
if "data" is not "q" the value delivered by the function on the next

-* simulation cycle will be "data", modified as described above. However if
"gate" is "t" and "data" is "q", the output on the next cycle will be the
same as the curent output, that is the latch behaves as if it had been
disabled with "gate" equal to "f". Finally, if "gate" has any other value
the next value delivered will be "i". It should be noted that the value
delivered on the first simulation cycle is "i", indicating that it is
impossible to predict which state a memory element will be in after
'switch-on' (see LATCHBOOL in Annex D.2.3).

There is a set of generic functions, analogous to LATCHBOOL, defined in
the auxilary library (see Annex D.3) for modelling rows of latches, where
the data inputs and outputs are 'vord(n)'s. It should be noted that there
is no latch primitive for 'num' or 'boollist' data types, as these are
essentially unbounded and so cannot be held in latches of finite length.

7.3 An example of specification and verification of a circuit with memory

In order to demonstrate the verification of a circuit containing memory
elements, an example of a counter will be used. Informally, the requirement
is for a six bit counter, the current state of the counter being "count".
The operation of this counter is controlled by two lines, called "func".
When "func" is 0, the counter does nothing (ie "count" does not change),
when "func" is 1, the counter is loaded with the value on a six bit input
bus, called "loadin". When "func" is 2, "count" is incremented and when
"func" is 3, "count" is incremented twice. There is a further requirement
that there should be a signal coming from the counter to indicate when the
contents of the counter are 63. Fig 6.a illustrates this requirement. The
formal specification of this requirement, and the whole of the proof of
the correctness of the circuit design to meet this requirement, is given in

*Annex H. The rest of this section will discuss some of the more general
points raised by this example.

'q 11

As was stated in the previous section, the memory element has to be
'split out' of the rest of the circuit before verification can commence.
This is illustrated in Fig 6.b. It would therefore be expected that the
SPEC and CIRCUIT function would be of the form :-

FN SPEC/CIRCUIT - (word6: count loadin, word2: func) -> (vord6, bool)

That is, taking "count", "loadin" and "func" as inputs, and delivering
the next value of "count", "nextcount" and the count equals 63 value,
"count63", as outputs. This is correct for CIRCUIT, but as was stated
earlier, the SPEC function may be used for either verification or
simulation. This means that a 'latchmode' input is required for SPEC, to
indicate its current use. This could be added as a forth input parameter,
as: -

(word6: count loadin, word2: func, latchmode: mode)

but this makes later functions untidy. It is neater to keep the three inputs
that correspond to the inputs of CIRCUIT as a single input structure, and to
add the 'latchmode' input as a second parameter, as:-

((word6,word6,word2): signals, latchmode: mode)

The members of "signals" must of course be then named within the SPEC
function. That is "LET count - signals[l]." etc (as shown in Annex H.2).

Having produced the SPEC and CIRCUIT functions, consideration must be
given to the test vectors required to show correspondence between the two.
Firstly, it should be noted that the system as shown in Fig 6.b has 14
inputs, and so would require 16384 tests to perform exhaustive checking
by a simplistic method. It will be shown that using intelligent exhaustion
the same effect can be achieved with just 148 tests.

It is obvious from the specification that "func" provides a major
control over the value of "nextcount", so testing for this output will be
considered for the four possible legal values of "func".

When "func" is 0, the next state of count is unchanged, as indicated
by "nextcount" being "[6]q". It can be seen that this value is independent
of both the current value of "count" and "loadin". So a single vector with
"count" and "loadin" both equal to "[6]x" is sufficient to check this
condition. Whilst it would not have been incorrect to specify "nextcount" as
"count" in this case, proof of correspondence would then have required 64
vectors (ie all legal values of "count").

When "func" is 1, the value of "nextcount" is independent of the current
state of "count" and so the "count" input will have the value "[61x". As the
next state of "count" is defined as "loadin" it would be possible to show
for each of the 64 legal values of "loadin" that "nextcount" was correct,
however it is more efficient to show that each bit of the "nextcount"
depends only upon the equivalent bit of "loadin". That is the first bit is
tested with "loadin" equal to "(f,x,x,x,x,x)" and "(t,x,x,x,x,x)" etc.
Therefore just twelve vectors are needed.

When "func" is 2 or 3, the value of "nextcount" depends upon arithmetic
operations performed on the current value of "count", but is independent of
"loadin". Therefore in each of these cases the 64 possible legal values of
"count" must be tested, with "loadin" equal to "[6]x". That is 128 vectors

are needed.
12

Finally, the "count63" output must be shown to be correct when the
current value of count is 63 (ie "[61t") and when any bit is "f", "loadin"
being "[6]x". That is seven vectors are required (see comments in section
H.2).

That is, the total number of vectors required is just 148. Annex H
Adetails the formal specification, the circuit to implement this

specification and the functions required to perform the above verification.

It is also possible to use the SPEC function as a model of the counter
in a larger simulation. This requires the "nextcount" output of SPEC
'Joining' back to the "count" input, as Fig 6.a. This is achieved by the
following function:-

FN COUNTER - (word6: loadin, word2: func) -> (vord6,bool):
BEGIN MAKE SPEC: specification.

JOIN ((specification(l],loadinfunc), simulate) -> specification.
OUTPUT specification

END.

* 8 Application to the verification of the VIPER microprocessor

In the above examples, the technique described has led to a reduction in
* .the number of tests required for verification. It is recognised that these
* were simple examples that could have been tested exhaustively anyway.

However, as stated in the Introduction, the method described was developed
to solve a particular practical problem. The design of the VIPER processor
naturally divided into nine major blocks, and this partitioning existed
before the method of testing was developed. Of these, only the ALU required
further sub-division. This was divided into eight identical 4-bit ALU
slices plus various circuits to 'glue' the whole ALU together. The total
design was implemented in some 4000 gates (each gate being the equivalent
of a two input NAND or NOR).

One of the circuit blocks was an instruction decoder, having 18 inputs
and 26 outputs and consisting of some 500 gates of random logic. Compared
to the quarter of a million possible input states that would be necessary
for conventional exhaustive testing, this circuit was verified using 1200
tests produced in the manner described above. Furthermore, this verification
found a design error that would have been virtually impossible to find by
simulation. If VIPER had been reset during the execution of a call
instruction, one particular flag bit would have failed to clear. The chances
of a simulation attempting to perform a reset during that particular

*i instruction, whilst that particular flag bit was true, is so small that the
error would very likely have remained undetected. It is just this kind of
improbable, data dependent, fault that is unacceptable in a safety critical
system.

The whole of VIPER required some 6000 tests to verify the various
component parts, and by simulating the whole chip using the specification of
the parts, rather than the implementations, it has been possible to run some
very large hardware test programs, that would have been impractical on a
gate level simulation.

13

9 Conclusion

The application of the technique described in this paper to VIPER
has shown that it is possible to specify the functionality of comparatively
large circuit elements, and to show that a gate level implementation of
these elements is consistent with that specification. The size of circuit
element that can be treated in this way depends upon its functionality.
For example n-bit arithmetic and parity operations require 2 to the power n
tests, as all input bits are significant in determining the result. However,
this method still allows the system to be partitioned into few large blocks,
the overall effect of which can be determined algebraically.

Work to date has concentrated on proving the validity of the method of
proof and its application to VIPER. However, a number of possible futurelines of research are clear. The main aim of this future work would be to

incorporate the above methodology into a 'user friendly' environment. The
first such improvement would be to provide a tool to check that the test
vectors defined to verify a particular circuit did provide complete
coverage. An extension of this would be to automatically generate the test
vectors from the SPEC function. Finally, as it seems likely that the
algebraic manipulations will be performed in the language LCF-LSM rather
than ELLA, a translator from ELLA to LCF-LSM (or more likely LCFLSM to

*ELLA) would seem desirable.

Whilst the motivation behind this work has been the necessity to prove
the correctness of circuits to be used in safety critical environments, it
is believed that with the increasing complexity of VLSI circuits, it will

-.. be necessary to employ more formal design verification techniques, such as
described in this paper to a far wider range of products for purely
commercial reasons.

Acknowledgements

The author wishes to thank Dr W J Cullyer, Dr R J W Kershaw and Mr J
D Morison for their help and advice during the development of the ideas
expressed in this paper.

! .4

IS.

References

[1] CULLYER W.J.
"Software design methods"
Proc. Design & Advanced Concepts of Avionics/Weapons
Systems Integration Colloquium.
Royal Aeronautical Society, London 1984

[2] CULLYER W.J., PYGOTT C.H.

"Hardware proof using LCF-LSM and ELLA"
RSRE memo 3832.

[3] KERSHAW R.J.W.
"Safe control systems and the VIPER microprocessor"
RSRE memo 3805.

[4] GORDON M.J., MILNER R.A., WADSWORTH C.P.
"Edinburgh LCF"
Lecture Notes in Computer Science, 1979, Springer-Verlag

[5] GORDON M.J.
"LCF-LSM"
University of Cambridge Computing Laboratory,
Technical Report 41 4

[6] GRIERSON J.R., COSGROVE B., DANIEL R., HALLIWELL R.E., KIRK I.H.,
KNIGHT J.C., MCLEAN J.A., MCGRAIL J.M., NEWTON C.O.

"The UK5000, Successful collaborative development of an
integrated design system for a 5000 gate CMOS array with
built-in test"
PROC. ACM IEEE Design Automation Conference,
Miami Beach, June 1983

[7] MORISON J.D., PEELING N.E., THORP T.L. ,.1

"ELLA: Hardware description or specification?"
PROC. IEEE International Conference CAD-84.
Santa Clara Novl2-15 1984

15'

)a

?N

- -o ~ aer s w.
i " ' ~ ' ' V9'

QSEEC

FI. MLMETTO FA ORIPT UTPEE

tetn m e ETVCO

test vecto

SPEC CIRCUI

COMPARE

PRINTED DATA TO
USER

FIG.2 DIAGRAMATIC VERIFICATION STRATEGY

INPT

* FIG.3a FINITE STATE MACHINE

INPUTS CURRENT STATE

MEM R=Y

L dO-
lo

OUT US NEX STAT

FIG-b FIITESTAT MACINEFOR ALIDTIO

FIG-3 VEIYN ACRUTWIHMMR

..,,

'=

EDGE TRIGGERED UK5000 LATCH
LATCH (e.g. 7474) (COMMON CLOCK NOT SHOWN)

DATA DATA

COMMON- CLOCK

FIG.Gc FIG.4b

DATA DATA

COMMON-CLOCK GElLKB

FIG.4c FIG.4d

FIG.4 EXAMPLES OF LATCH ELEMENTS

ELLA SIMULATION TIMES

* COMMON -CLOCK£
IUNSTABLE I

GATE STABLE

GATAE=TE 0
CLK INPUT OF LATCHJ GAE I GATE i1 = I

St-POSSIBLE INCORRECT
CLOCKING OF LATCH

FIG.5a FIG.5b

FIG.5 GATED EDGE TRIGGERED LATCH TIMING (SEE FIG.4c)

. .

FUN 6FUNC NEXT VALUE
______ OF COUNT

0 NO CHANGE

66 2 COUNT .1

3 COUNT .2

FIG.Ga REQUIREMENT FOR COUNTER CIRCUIT

4ODI
6 (CURENT ALUE

6 (CURNT V L E

MEMORY
ELEMENT

COUNT =63 NEXT VALUE
OF COUNT

FIG. 6b COUNTER CIRCUIT 'SPLIT OPEN' FOR VALIDATIONN

FIG .6 A COUNTER

Annex A: ELLA: A brief introduction to its syntax and semantics

This annex will outline those features of ELLA used in this paper. It
contains more detail than could be included in the body of the paper, but is
not intended to be a complete description of the language.

All ELLA programs consist of type declarations and functions only. There are
no global variables or constants (other than integer constants) in ELLA. Also,
ELLA has no in-built data types, so all data types to be used must be declared
explicitly.

A.1 Primitive data types

Two sorts of primitive data types can be declared; enumeration and
integer types. The declaration of an enumeration type consists of the
type name, such as "bool", and a list of the values it may have, such as
"t" "f" "x" and "z". That is:-

TYPE bool - NEW(t I f I x z).

Note the order of the values in the declaration is irrelevant.

Integer types consist of the type name, such as "countint", a prefix
name, such as "count" and the range of values that integers of this type
may have, such as 0 to 10. That is:-

TYPE countint - NEW count/(0..10).

Variables of type "countint" can have the values "count/0" "count/l"
etc to "count/10". The prefix "count" distinguishes integers of type
"countint" from integers of any other type (which would have a different
prefix).

Integer constants (for the size of arrays etc) can be defined as:-

INT arraysize - 24.

A.2 Compound data types

Compound data types are collections of primitive data types or other
compound data types. They are of two forms; rows and structures. A row
is a collection of identical data types. For example, "(t,f,t)" is a
row of three "bool"s, the type of this object can be expressed as either
"(bool,bool,bool)", or "[3]bool". Structures are collections of
different data types, such as "(t,count/0,(t,f))". The type of this
object is "(bool,countint,[2]bool)".

Both rows and structures are indexed in the same way. If the above
example of a structure was called "struct", then "struct[l]" would be
the first element of the structure, that is the "bool" with value "t".
Similarly, "struct[2]" is the "countint" with value "count/0", and
"struct[3]" is the "[2]bool" with value "(t,f)". This row can be
indexed in the same manner, such that "struct[3]ll]" is a "bool" with
value "t", and "struct[3][2]" is a "bool" with value "f". Groups of row
elements can be selected by "[index..index]". For example, "a[2..4]" is a
row of three objects selected from row "a".

I
o

Al

I

A name can be given to a compound type in the following manner:-

TYPE struct - (bool0 countint, [2]bool).
TYPE wordl6 - [16]bool.

A.3 Functions

Functions in ELLA are similar to mathematical functions, in that
they deliver a value and can only operate upon those values passed to
the function when it is used. That is, there are no global variables.

A function consists of a heading and a body. The heading describes
the types-of the objects that the function will operate upon, together
with their local names (ie the names by which the parameters are known
within the function body) and the type of the object delivered by the
function. For example, consider a function called "TIMEOUTS", which is
to operate on two objects of type "bool", and one object of type
"[3]bool" and is to deliver a structure with "bool" and "[3]bool"
elements. The names, within this function, of the objects to be
operated upon are "reset" "inc" and "current". That is the function
heading is:-

FN TIMEOUTS - (bool: reset inc, [3]bool: current) -> (bool, [3]bool):

A function body consists of either a single 'expression' (qv), or
"BEGIN" followed by a number of 'statement's (qv) "OUTPUT" followed by
an expression and "END.". The value delivered by the function in the
first case is the value of the expression, and in the second is the
value of the expression between "OUTPUT" and "END.". The type of the
delivered value must be the same as that indicated in the function
heading.

A.4 Expressions

There are four types of ELLA expression. All of them have the
property that they deliver a value. They are; simple, function calls,
CASE and ARITH.

A.4.1 Simple expressions

These are structures composed of explicit data values, names
local to the function containing the expression, or other
expressions. Explicit values are those values declared as being of
a particular data type, such "t" or "count/4" in section A.l. Local
names are the values associated with the parameters named in the
function heading or the value associated with a named expression
(see LET, section A.5.1). Note that a single value can also be a simple
expression. For example:- N

t inc (reset, inc, (t,t,t)) are simple expressions.

A2

A2.

A.4.2 Function calls

An expression can be the result delivered by applying a function
to a particular set of values. The values operated upon can be any
sort of expression including simple expressions (ie explicit values
or local names). Given a function called OR that operates on two
"bool"s and delivers a "bool", the OR of "a" and "b" (where "a" and
"b" are local named values of type "bool") is given by "OR(a,b)".

There are two exceptions to this rule. If the function has a
single parameter, the brackets are not needed. So "NOT(a)" can be
written as "NOT a". If the function has two parameters, it can be
placed between the values it is to operate upon. So "OR(a,b)" can
be written as "a OR b". Similarly "a OR b OR c OR d" is the same as
"OR(OR(OR(a,b) ,c) ,d)".

A.4.3 CASE expressions

The structure of a CASE expression is:-

CASE expression OF (value: expression) ELSE expression ESAC

Where (...) means repeated any number of times.

The first expression is evaluated and the resulting value is
compared with the 'value' component of each 'value: expression'
pair. If any of these match, the value delivered by the CASE
expression is the value of the associated 'expression' component. If
none of the 'values' are equal to the evaluated value, the value of the
expression between ELSE and ESAC is delivered. If it is known that
the 'value: expression' pairs cover all possible values the "ELSE
expression" term may be omitted.

The ELLA compiler checks that the various limbs of the CASE are
non-overlapping, that is given a particular value for the expression
between CASE and OF only one of the 'value: expression' pairs should
be selectable. If any of the pairs do overlap, this will normally be
indicated by a compilation error. However by using ELSEOF, overlapping
pairs can be allowed. The function AND in section 4 of the body of the
paper is illegal in this respect (but textually simpler than the legal
version). It is stated as:-

FN AND - (bool: a b) -> bool:
CASE (a,b) OF (t,t): t, (bool,f): f, (f,bool): f ELSE i ESAC.

If 'a' and 'b' are both 'f', then either the second or third limbs
could be selected (although they would both give the same result), so
this would be rejected by the compiler. The correct function is:-

FN AND - (bool: a b) -> bool: IN
CASE (a,b) OF

(t,t): t, (bool,f): f ELSEOF (fbool): f
ELSE i

ESAC.

A3

A.4.4 ARITH expressions

If a function is required to perform arithmetic operations on
integer types, and deliver an integer type result, the body of the
function may be a single ARITH expression. The required arithmetic
operation may be expressed in an ALGOL like manner using the
operators "+", "-.", "*", "%" etc. "%" is used for integer divide ("/"
having been used in the representation of ELLA integers). The operators
"SL" and "SR" also exist, meaning shift left and shift right. Condition
clauses may be formed using an IF..THEN..ELSE..FI construct.

A.5 Statements

There are three types of statement that may form the body of a
function. Note that when a number of expressions of the same type is %
required, the statement indicator (LET, MAKE or JOIN) is only required
once. So that, "LET a - t, b - f." is the same as
"LET a - t. LET b - f.".

As well as LET, MAKE and JOIN, a function body may also contain the
definition of a local function, using the format described in A.3.

A.5.1 LET

The LET statement allows a name to be associated with the value
of an expression. So that "LET aorb - a OR b." means that "aorb" is
now arecognised local name associated with the value of the
expression "a OR b".

A.5.2 MAKE and JOIN

In all the above examples, local names must have been declared
as the parameter of a function or a LET statement, before they could
be used in an expression. Without some means of overcoming this
restriction it would be impossible to model circuits with feedback
(and hence memory). Consider a pair of cross coupled NAND gates (as
shown in Fig A.1). The description of this circuit as:-

FN RSLATCH - (bool: a b) -> bool:
BEGIN LET nandl - NAND(a, nand2),

nand2 - NAND(b, nandl).
OUTPUT nandl

END.

is illegal, as "nand2" is used in an expression before it is
declared. MAKE allows a name to be associated with the output of a
particular call of a function before the inputs to that function are
available. JOIN allows the required inputs to a function named by

MAKE to be connected after they have been declared. Hence, a legal
version of the same function would be:-

A4

, FN RSLATCH - (bool: a b) -> bool:
BEGIN MAKE NAND: nand2.

LET nandl - NAND(a, nand2).
JOIN (b, nandl) -> nand2.
OUTPUT nandl

END.

A.6 DELAY and ELLA's model of time.

The ELLA simulator, used to animate ELLA text, calculates the values
of all functions and variables at a series of discrete time steps. All the
operations described so far are evaluated in zero time (as regarded by the
simulator). In order that some circuits with feedback can be modelled, it
is necessary to provide delays.

A special expression, "DELAY", exists which is used to create functions
which will act to delay a signal for a number of 'simulation states'. It is
used as:-

FN DELAYANY - (anytype) -> anytype: DELAY(value, integer).

This defines a function, DEAYANY, that delays a signal of type
'anytype' for 'integer' clock ticks. 'value' gives the initial value of
DELAYANY's output.

For example, if NOT is a function that provides boolean inversion, and
DELAYBOOL is a function that delays a 'bool' by one simulation cycle. Then
consider the following two functions:-

FN F1 - (bool: dummy) -> bool: (see Fig A.2)
BEGIN MAKE NOT: invert.

JOIN invert -> invert.

OUTPUT invert
END.

FN F2 - (bool: dummy) -> bool: (see Fig A.3)
BEGIN MAKE NOT: invert.

JOIN DEAYBOOL invert -> invert.
OUTPUT invert

END.

Both functions describe circuits consisting of single inverter with the
output connected back to the input. In Fl, there is no delay involved, so
ELLA simulator will be unable to calculate the value to be delivered (and
will deliver "?"), as the output is defined as being the inverse of the
output (which is clearly paradoxical). In the case of F2 however, with a
single state delay in the feedback path, the output at time "T" is defined
as the inverse of the output at time "T-l", which is calculable. F2 in fact
models an oscillator.

Note that in both functions the input parameter 'dummy' is not used.
However all ELLA functions must have at least one input parameter as
functions of type "VOID -> bool" (to use ALGOL68 notation) are not allowed.

A5

A.7 MACRO's

MACRO's allow the definition of groups of similar functions to be
written as a single parameterised function and then characterised with
explicit parameters when required.

For example, consider a function that shortens a roy of 'bool's by one
element. For a general roy of length "n", this function can be written as:-

MAC SHORTEN(INT n) - ([n]bool: a) -> [n-l]bool: all..(n-1)].

Specific functions for given values of "n" can then be produced as:-

FN SHORTEN4 - ([4]bool: a) -> [3]bool: SHORTEN(4) a.

An "IF ... THEN ... ELSE ... FI" construct is allowed within a MACRO
to produce different functions for different input parameters.

A-

,%7

IA
I'

%"6

%;I

FIG.A.1 AN RS LATCH

FIG.A.2 AN UNSTABLE FUNCTION (Fl SECTION A.6)

FIG. A.3 AN OSCILLATOR FUNCTION (F2 SECTION A.6)

Annex B: An outline of LCF-LSM

The material in this annex is a very brief digest of that presented by
Gordon in References 4 & 5 but contains enough detail to enable comparison
to be made with the library of functions described in Annex C.

The form of LCF-LSM in use has the following built-in types:-

'bool' with values T and F

'num' with values 0, 1, 2 etc (without limit)

'word(n)' being a collection of (n) binary objects (each object having the
value 0 or 1). A word(n) corresponds to an Cn)-bit computer word.
The value of the 'word4' representing the decimal value 11, is
written as #1011.

'? list' A list of objects of any type. For example, 'bool list' is a list
of 'bool's. It should be noticed that a list is unconstrained and
may contain any number of elements (numbered from 0).

LCF-LSM supports a number of operations on these types, only the function
names are given here, with a brief statement of their effect:-

- test of equality between objects of the same type 7#? -> bool

+ numerical addition num#num -> num
- numerical subtraction num#num -> num
* numerical multiplication num#num -> num
/ numerical division num#num -> num

NOT boolean inversion bool -> bool
OR boolean disjunction bool#bool -> bool

AND boolean conjunction bool#bool -> bool
XOR boolean exclusive OR boolfbool -> bool

CONS list constructor (any type) 7#? list -> ? list
HD head of list ? list ->?
TL tail of list ? list ->? list

NULL check for empty list ? list -> bool
EL deliver selected element from list num#? list -> ?

SEG deliver selected set of elements from list (num~num)#? list -> ? list
V convert a bool list to the equivalent number bool list -> num

Generic functions parameterised for values of (n)

WORD(n) convert a number to the equivalent word(n) num -> word(n)
BITS(n) convert a word(n) to the equivalent bool list word(n) -> bool list
VAL(n) convert a word(n) to the equivalent number word(n) -> num
NOT(n) invert each bit of a word(n) vord(n) -> word(n)
AND(n) bitwise conjunction word(n)#word(n) -> word(n)
OR(n) bitwise disjunction word(n)#word(n) -> word(n)

Bl

Annex C: Description of the LCF-LSM library expressed in ELLA

CA Supported types

C.1.1 bool

This is the ELLA enumeration type, equivalent to the LCF-LSM type "bool".
It has eight values:-

t: True) -These are the normal boolean values, and are the
f: False) only values recognised by LCF-LSM

i: Illegal or indeterminate, used either to show that some illegal
action was attempted, or that the result of some function is
indeterminate, such as AND(t,x)

x: Unknown, used is an input to a function under test to indicate that
that input should be irrelevant to the output, or as the
output of a specification function to show that a particular
output is not being used under some set of circumstances and
that the implementation could deliver any value

q: Unchanged. used as the output of a latch when the enable input has
not been selected (see latch functions, D.2.3). That is it
represents a stored boolean value that has not altered.

by: A value used inside the library functions only (ie should never be
delivered). It is used as the value of an "empty" element
in a boollist.

z: High impedance, used in the description of tri-state logic.

oc: Open collector, used in the description of open collector logic, for
an output transistor in its "off" state. An open collector
output transistor in its "on" state is represented by "f".

C.1.2 num

This is an ELLA integer type equivalent to the LCF-LSM "num" type. It
should be noted that whilst the range of LCF-LSM 'num's is the entire
range of positive integers (ie 0 to infinity), ELLA's number range is
limited. The ELLA 'num' type is defined with a range of legal values equal
to: 0 to 262143 (2**18 - 1). Two other values are defined to indicate
particular conditions:-

number/0 to number/262143: The range of positive integers used as legal
values.

number/262144: Called "illegalnum", this is the number used to indicate
an illegal or indeterminate 'num' (cf 'i' in the definition
of bool).

number/262145: Called "unknownnum", used is an input to a function under
test to indicate that that input should be irrelevant to
the output, or as the output of a specification function to
show that a particular output is not being used under some
set of circumstances and that the implemenation could
deliver any value (cf 'x' in the definition of bool)

Cl

Note the "integer type prefix" in ELLA is "number", and that there is no
analogue for the 'bool' value 'q'. This is because 'num's are essentially
unbounded objects and so cannot be stored in a finite sized latch.

C.1.3 boollist (& maxlist)

This is the ELA equivalent of the LCF-LSM "boollist" type. It should be
noted that the LCF-LSM 'boollist' is unconstrained (ie may contain 0 to
infinite members), whilst the ELLA boollist is represented by a finite row of
'bool's. The first declaration in the library, "INT maxlist - ????", sets
the length of this row, and hence the maximum length of 'boollist' that ELLA
can support. This value must lie between 19 and 256 (inclusive).

When a boollist is constructed from a row of bools, the significant values
are held in the least significant end of the boollist, whilst the rest of
the boollist is filled with 'bv's. That is if a boollist is represented as
a row of 32 'bool's,-and comprises 10 significant values (ie 't', 'f', 'i',
'x', 'q', 'z' or 'oc'), in ELLA terms, the boollist is represented with
elements 1 to 10 being the significant values, whilst elements 11 to 32
contain 'by'. Notice however that LCF-LSM numbers the boollist from element
0, so if EL or SEG are used to examine the contents of the boollist, elements
0 to 9 are the significant values, whilst 10 to 31 are 'by'.

Three special values of boollist should be noted. These are an empty list,
represented by "[maxlist]bv", a corrupted list, ie one-that has been
corrupted by an illegal or ill-formed operation (represented as
"[maxlist]i") and an unknown/irrelevant list (represented by "[maxlist]x").
Note that there is no representation of an unaltered stored list, as
boollists are essentially dynamic objects and so cannot be held in latches
of finite length.

C.1.4 word(n)

This is the ELLA equivalent of the LCF-LSM "word(n)" types, representing a
fixed length row of 'bool's. When wishing to use a word(n) type, the user
should make a declaration of the form:-

"TYPE wordl6 - [16]bool." for (n) - 16

The value of (n) should not exceed 18, unless only logical operations are
to be performed on the words, as larger 'word(n)'s cannot be converted into
'num's. Allowable operations are:- BITS(n), NOT(n), AND(n) and OR(n).

Illegal, unchanged stored, unknown, high impedance and open collector
'word(n)'s are represented by "[n]i", "[n]q", "[n]x", "[n]z" and "[n]oc"
respectively.

q C2

C.2 Supported simple functions

C.2.1 Boolean operations

NOT: (bool: a) -> bool
This is the inversion operation. If 'a' is It' or 'f' the result
is -f' or 't'- as would be expected. If 'a' has any other value the
result is 'i'.

AND: (bool: a b) -> bool .5

This is the 'and' operation. It is defined so that "AND(t,t)" is 't',
whilst "AND(anything f)" (or AND(f, anything)) is 'f', as would be
expected. Under all other circumstances the result is 'i'. Note
specifically that "AND(t,x)" and "AND(t,i)" are 'i'.

OR: (bool: a b) -> bool

This is the 'or' operation. It is defined in an analoguous way to AND

above.

EQUIV: (bool: a b) -> bool
This is the equivalence operation. If 'a' and 'b' are both either It'
or 'f', then if 'a' - 'b' the result is 't', if 'a' is different to
'b' the result is 'f'. In all other cases the result is indeterminate
('i')•

XOR: (bool: a b) -> bool
This is the "exclusive or" operation, and is equivalent to

NOT(EQUIV(a, b)).

PASS: (bool: a) -> bool

If 'a' is either 't' or 'f' then the result is 'a', otherwise the
result is 'i'. That is this function ensures that the result of a
calculation is either 't', 'f' or 'i', and prevents the other
special values of 'bool' from appearing in the output of a function.

," C.2.2 Numerical operations

EQUAL: (num: a b) -> bool
If 'a' and 'b' are both legal numbers (0 to 262143), then if 'a'
equals 'b' the result is 't', or if 'a' is not equal to 'b' is result
is 'f'. If either input is not a legal number then the result is 'i'.

The following are all diadic numerical functions. They all deliver 7
"illegalnum" if either of the inputs is a non-legal value (not 0 to 262143).
In addition each function also has defined error conditions which will also
deliver "illegalnum".

PLUS: (num: a b) -> bool
Numerical addition, an error occurs (result "illegalnum") if

(a+b) > 262143, ie cannot be represented as a legal value.

MINUS: (num: a b) -> bool
Numerical subtraction (a - b), an error occurs if a < b, ie result

should be negative.

%
C3

I

TIMES: (num: a b) -> bool
Numerical multiplication, an error occurs if (a * b) > 262143, ie
cannot be represented as a legal value.

C.2.3 List operations

CONS: (bool: a, boollist: b) -> boollist
This adds the value 'a' (as the most significant member) to a
boollist 'b'. The function PASS is applied to 'a' before it is
joined onto the boollist, so only the values 't', 'f' and 'i' can be
added (all other values are turned to 'i's). If the boollist is full,
that is consists of "maxlist" significant values (not 'by'), then
there is no room to add 'a' and a corrupted list ([maxlist]i) is
delivered. Note specifically that adding anything to a corrupted
list or an unknown list ([maxlist]x), results in a corrupted list.

HD: (boollist: a) -> bool
This delivers the most significant member of a boollist. Again,
PASS is applied to the result, so only the values 't', '' and 'i'

can be delivered. Specifically, applying RD to a empty boollist
([maxlist]bv) or a corrupt boollist ([maxlist]i) delivers 'i'.

TL: (boollist: a) -> boollist
This delivers the boollist formed by removing the most significant
member from 'a'. Note that if 'a' is either an empty list, a

corrupted list or an unknown list, the result is equal to a
corrupted list.

NULL: (boollist: a) -> bool

This delivers 't' if 'a' is an empty list, 'i' if 'a' is a corrupted

or-an unknown list. Otherwise it delivers 'f'.
. °'

EL: (num: element, boollist: a) -> bool
* This delivers the 'element' member of boollist 'a' (numbered from 0

to maxlist-1). The function PASS is applied to the result to
ensure only 't', 'f' and 'i' can be delivered. The illegal value 'i'
will be delivered if 'element' is greater than maxlist-l or is not a

legal number (ie not 0 to 262143). 'i' vill also be delivered if 'a'

is a corrupted list, or contains less than 'element'+l significant
values.

SEG: ([2]num: elements, boollist: a) -> boollist

This delivers the 3oollist formed by the members of 'a' from
'elements[l]' to 'elements[2]'. If the number of significant elements
required (elements[2] - elements[lJ + 1) is less than 1 or
greater than maxlist, or if either 'elements[l]' or 'elements[2]'
is not a legal number, the result is a corrupted list.

If the number of significant elements required in the result is

legal (ie between 1 and maxlist), then the result will have that

many significant elements (either 't', 'f' or 'i'). Specifically,

applying SEG to a corrupted list, an unknown list, or an empty list >1
will result in the appropriate number of 'i's.

C4

The folloving case should be noted. If 'a' is a boollist, of
potentially 32 members (ie maxlist - 32), with 10 significant
(non-bv) values, and the operation SEG((number/7, number/12), a) is
applied. The result is the boollist consisting of members 7 to 9 of
'a' together with three 'i's.

V: (boollist: a) -> num
This converts a boollist to the equivalent 'num'. If 'a' is a
corrupted list, an empty list or an unknown list, the result will be
'illegalnum'. The result will also be 'illegalnum' unless all the
significant members of 'a' are either 't' or 'f', or if the
numerical equivalent of 'a' is greater than 262143.

C.3 Supported generic functions, implemented as ELLA MACRO's

The following functions exist as ELLA macro's. They are all involved with
operations on 'word(n)'s, and are parameterised for (n). For example, the
first function, WORD(n), exists in the library as a macro called WORDN.
If the function WORD4 (ie num -> word4) is required the user must make the
statement:-

"FN WORD4 - (num: a) -> word4: WORDN(4) a."

WORD(n): (num: a) -> word(n)
This converts a 'num' into its representation as a word(n). If 'a'
is 'unknownnum' or 'illegalnum', or if 'a' cannot be represented in
(n) bits (eg WORD4(number/16)) the result is M [n]i". -

-p.

BITS(n): (word(n): a) -> boollist
This converts a word(n) into the equivalent boollist. The boollist
will always have (n) significant members ('t', 'f' or 'i' only).

VAL(n): (word(n): a) -> num
This converts a word(n) into its appropriate numerical equivalent.

It is identical to V(BITS(n) a).

NOT(n): (word(n): a) -> word(n)
This performs the NOT operation on each of the elements of 'a' to
produce the result.

AND(n): (word(n): a b) -> word(n)

This performs the AND operation on each of the elements of 'a' and
'b' to produce the result (ie bit 1 of the result is a[l] AND bill).

OR(n): (word(n): a b) -> word(n)
This performs the OR operation on each of the elements of 'a' and
'b' to produce the result (ie bit 1 of the result is a[l] OR b[l]).

WORDEQU(n): (word(n): a b) -> bool
This function tests for equality between two 'word(n)'s. The
definition of equality used is as follows: the equivalent bits from
both 'word(n)'s are compared using EQUIV, if all (n) comparisons are
't' the 'word(n)'s are equal and 't' is delivered, if any of the
comparisons is 'f' the 'word(n)'s cannot be equal, and so the result
is 'f', any other result delivers 'i'.

C5

Annex D: Description of the types and functions in the auxilary library

D.1 Supported types

D.1.1 result

This is an ELLA enumeration type used when comparing the values delivered
by two functions, one of which claims to be an implementation of the other
(the specification). It has three values:-

ok: The value delivered by the implementation function agrees with that
required by the specification.

xxxbadspec: The value delivered by the specification function is illegal or
bv (this should not occur).

xxxwrongxxx: The value delivered by the specification function is legal, but
the implementation does not agree with it.

See section D.2.2 for the function based on this type.

D.1.2 latchmode

This is an ELLA enumeration type used in the specification of latch
primitives for the 'bool' and 'word(n)' types. It has two values:-

verify: This indicates that the latch is to be used for verification.
This means that the data and enable inputs to the latch directly
affect the output (without delay), and that if the enable is 'f',
then the output will be the "unaltered stored" value associated
with the appropriate type (ie either 'q' for a bool latch or
"[n]q" for a word(n) latch).

simulate: This indicates that the latch is to be used for simulation. This
means that the data and enable inputs affect the latch outputs on
the next simulation cycle (ie after one 'clock-tick'). Also, if the
enable input is If', then the latch delivers the same value as
during the last simulation cycle. That is it is acting as a true
memory device..

See section 7 of the main body of this paper, and sections D.2.3 and D.3 for
details of the latch functions.

D.1.3 testselect

This is an ELLA enumeration type which is used solely by the function
DISPLAYRES. It has two values:-

all: This indicates that the results of all tests are to be printed.

failonly: This indicates that only those tests which result in errors are to
be printed.

The use of DISPLAYRES and the testing strategy are more fully explained in
the main body of this paper (section 6) and is used in the examples in
Annexes C and H.

Dl

: ; ; : z : - .. ,., .. ,. =..,,...,,.... .,., , ,,.

D.2 Supported simple functions-

D.2.1 Numerical operations

DIVIDE: (num: a b) -> bool
Integer division (a/b). The result is 'illegalnum' if either 'a' or
'b' is not a legal numerical value (ie not 0 to 262143) or if 'b'
is zero.

REMAINDER: (num: a b) -> bool
Finds the remainder after performing the integer division (a/b),
The result is 'illegalnum' if either 'a' or 'b' is not a legal
numerical value (ie not 0 to 262143) or if 'b' is zero. Note that:-

PLUS(REMAINDER(a,b), TIMES(DIVIDE(a,b), b)) - a

For all legal 'a' and 'b', when 'b' not zero

TESTCOUNT: (bool: dummy) -> num
This function generates a sequence of numbers from zero to 262143.
It is used when producing test vectors, to generate the current
vector number. The first value generated is zero, so the ELLA
simulator will perform test zero at time 0, etc. Should the
simulator be run beyond time - 262143, the output of TESTCOUNT
starts counting again from 0.

The 'bool' parameter to the function is not used, but must be
Vpresent, as ELLA does not allow "(VOID) -> num" functions (to borrow

ALGOL68 notation).

A. TESTWORD: (num: a) -> [18]bool
V This function converts a 'num' to a row of 18 'bool's. It is

used with TESTCOUNT to generate the current test number as a
[18]bool. Its behaviour is similar to WORDl8, but its operation is
undefined if 'a' is not a legal value (TESTCOUNT cannot produce
illegal values).

D.2.2 Compare functions

COMPBOOL: (bool: spec calc) -> result
This compares two bool values. One is the value delivered by a
specification function (spec) and the other that calculated by an
implementation function (calc). If 'spec' is 't', 'f', 'q', 'z' or
'oc' then if 'calc' has the same value, the specification function

61 has been implemented correctly and the result is 'ok'. If 'calc' has
some other value the result is 'xxxwrongxxx'. If 'spec' is 'x' then
any value delivered by the implementation function is correct and
gives the result 'ok'. No other value of 'spec' should be possible,
so if any other value of 'spec' is found, the result is
'xxxbadspec'.

D2

COMPNUM: (num: spec calc) -> result
This is a function analoguous to COMPBOOL for 'num's. If 'spec'
is a legal value (0 to 262143) then 'calc' must have the same value
to produce the result 'ok', otherwise the result is 'xxxwrongxxx'.
If 'spec' is 'unknownnum', then any value of 'calc' gives the
result 'ok'. Finally, 'spec' should not have the value 'illegalnum',
so if it has, the result is 'xxxbadspec'.

COMPJOIN: (result: a b) -> result
It may be necessary to compare a number of seperate elements by
use of COMPBOOL, COMPNUM and COMPWORD(n). COMPJOIN allows these
seperate 'result's to be combined. Its function is analogous to
AND between 'bool's.

If 'a' and-'b' are both 'ok' then the result is 'ok'. If either
'a' or 'b' is 'xxbadspec' then the result is 'xxxbadspec'. Otherwise
the result is 'xxxwrongxxx'.

D.2.3 Latch function

LATCHBOOL: (bool: data enable, latchmode: mode) -> bool
This is the basic latch primitive for the storage of a single
'bool' value. It has two modes of operation depending whether
the system is being verified or simulated ('mode' equals
'validate' or 'simulate'). The uses of these two modes is explained
in section 7 of the main body of this paper.

During verification, if 'enable' is 't', then the output of
LATCHBOOL is 'data' ('t', 'f', 'q' and 'x' only, all other inputs
give 'i'). If 'enable' is 'f', then the output will be 'q', to
indicate that the contents of the latch are not changed. Finally,
if 'enable' has any other value, the output is indeterminate, 'i'.

During simulation, the states of 'enable' and 'data' affect the
output on the next (not current) simulation cycle. If 'enable' is
't', then the next output of LATCHBOOL is 'data', provided 'data'
is not 'q' ('t', 'f', 'x' or 'i' only, as described above). If

- .'enable' is 't' and 'data' is 'q', the value delivered on the next
cycle will be the same as the current output. If 'enable' is 'f',
then the next output will again be the same as thecurrent output.
Finally, if 'enable' has any other value, the next output is
indeterminate, 'i'. During cycle 0 of the simulation the output is
'i', indicating that it is impossible to predict which state a
latch will start in after switch-on.

It should be noted that the output in verification mode is normally
the value that the simulation mode latch would produce on the next
simulation cycle. The exception to this is that if the latch is
disabled, 'enable' is 'f', the verification mode latch produces a

O special "marker" to indicate an unchanged value, whilst in
simulation mode the actual value is known and hence delivered.
Also using this "marker" value, 'q', as the data input has the same
effect as disabling the latch.

4
D3

REGBOOL: (bool: data enable, latchmode: mode) -> [2]bool
This function is like LATCHBOOL, but delivers a complementary pair
of outputs. The first output is the same as would be delivered by
LATCHBOOL, but the second is the inverse of the first if it is "t"
or "f", but otherwise is the same as the first (ie "x" "q" or "i").

D.2.4 The Display functions

DISPLAYRES: (result: data, num: testnum, testselect: level) ->

(num,result,bool)
DISPLAYBOOL: (bool: data control) -> bool

DISPLAYNUM: (num: data, bool: control) -> num
The use of these functions is explained in the main body of this
paper, section 6.3.

D.2.5 Tri-state functions

BOOLTRI: (bool: data enable) -> bool
This function is used to generate tri-state circuit elements.
If 'enable' is 't' then the output is "PASS data", (ie 't', 'f'
or 'i'). However, if 'enable' is 'f' the output is 'z'. Any other
value of 'enable' gives an output of 'i'.

JOINTRI: (bool: a b) -> bool:
This function models the connection of two tr-state signals. If
'a' and 'b' are both 'z' then the result is 'z'. If either is 'z'
then the result is the PASS value of the other, but if neither
'a' nor 'b' is 'z' then the result is 'i'.

D.2.6 Open collector functions

OCOUTPUT: (bool: a) -> bool
This function is used to model the output of an open collector
gate. If 'a' is 'f' it delivers 'f' (ie output enabled). If 'a'
is 't' then it delivers 'oc' (ie the output is disabled). Under all
other conditions the delivered value is 'i'.

WIREDOR: (bool: a b) -> bool
This function models the joining of two open collector outputs. If
either 'a' or 'b' are 'f' then the delivered value is 'f'. If both
'a' and 'b' are 'oc' then the delivered value is 'oc', and in all
other cases the value is 'i'.

PULLUP: (bool: a) -> bool
This function models a "pull-up" resistor applied to an open
collector gate. That is it converts an open collector signal
to a "normal" boolean signal. If 'a' is 'f' the result is 'f'. if
'a' is 'oc' the result is 't'. Otherwise the result is 'i'.

'4 D4

D.3 Supported generic functions, implemented as ELLA MACRO's

The following functions exist as ELLA macro's. They are all involved with
operations on 'word(n)'s, and are parameterised for (n). For example, the
first function, REPWORD(n), exists in the library as a macro called REPWORDN.
If the function REPWORD4 (ie word4 -> word4) is required the user must
make the statement:-

"FN REPWORD4 - (word4: a) -> word4: REPWORDN(4) a."

REPWORD(n): (word(n): a) -> word(n)
This function overcomes a problem in ELLA created by the order
in which elements are written in a denotation for a row of
objects. For example, the LCF-LSM representation of the word4
with a decimal value of 11 is #1011. The same value expressed in
ELLA is (t,t,f,t). Note that the bits are in the opposite order.
As the aim of this library is to enable easy translation of
LCF-LSM functions into ELLA, this bit reversal is regarded as -
unacceptable. However the function REPWORD(n) provides the bit
reversal so that the LCF-LSM value #1011 is correctly generated
by REPWORD4(t,f,t,t).

This function can also be used on word(n)'s delivered from a
function, to ensure the ELLA simulator will print the delivered
values in the expected order.

COMPWORD(n): (word(n): spec calc) -> result
This function compares two word(n)'s in a similar fashion to
COMPBOOL (applied to two bool's). The result is 'ok' only if
each bit of the calculated value (calc) agrees with the
equivalent bit in the specification value (spec), using the
algorithm stated in the description of COMPBOOL. If any of
these bit tests, gives the result 'xxxbadspec', this is the
delivered value from the function, otherwise the result is
'xxxwrongxxx ,

LATCHWORD(n): (word(n): data, bool: enable, latchmode: mode) -> word(n) *

This is identical to (n) LATCHBOOL's, see section D.2.3.

REGWORD(n): (word(n): data, bool: enable, latchmode: mode) -> (2]word(n)
This is identical to (n) REGBOOL's, see section D.2.3.

WORD(n)TRI: (word(n): data, bool: enable) -> word(n)
This function is used to generate tri-state busses. If 'enable'
is 't' then the output is 'data', (only 't', 'f' or 'i' values).
However, if 'enable' is 'f' the output is "[n]z". Any other
value of 'enable' gives an output of "[n]i" (cf BOOLTRI).

JOINTRI(n): (word(n): a b) -> word(n)
This function models the connection of two tr-state busses. It
is identical to (n) uses of JOINTRI (ie output 1 is
JOINTRI(a[l], b[l]) etc).

D5

.4

DISPLAYWORD(n): (word(n): data, bool: control) -> word(n)
The use of this function is explained in the main body of this
paper, section 6.3 and D.2.4.

SELECT(n): (word(n): a, num: element) -> bool
This function is used to select an element from a row of
'bool's. Its effect is very similar to "EL(element, BITS(n) a)".
However, whilst the above expression is capable of delivering
"f", "t" or "i" values only, SELECT(n) can deliver any 'bool'
value. It is used to select a particular element from a word(n)
delivered from a specification or implementation function for
comparison, for an example of use see Annex H.

OCWORD(n): (word(n): a) -> word(n)
This is equivalent to (n) OCOUTPUT's.

WIREDOR(n): (word(n): a b) -> word(n)
This is equivalent to (n) WIREDOR's.

PULLUP(n): (word(n): a) -> word(n)
%This is equivalent to (n) PULLUP's.

I

D

/ D6

Annex E: The LCF-LSM library in ELLA

INT maxlist - 32. **** the maximum length for a boollist ****
18 < maxlist <- 256

.

\ **********\

LOGICAL OPERATIONS *****
\ **********\

TYPE bool - NEW (t I f I i I x I q I bv I z oc).
\ true I false I dont-know I illegal \
\ unaltered stored value I
\ bv (used in boollist only) \
\ highimpedance I open-collector \

FN NOT - (bool: a) -> bool:
CASE a OF t:f, f:t ELSE i ESAC.

-o

FN AND - (bool: a b) -> bool:
CASE (a,b) OF

(t,t): t, (f,bool): f ELSEOF (bool,f): f
ELSE i

ESAC.

FN OR - (bool: a b) -> bool:
CASE (a,b) OF

(f,f): f, (t,bool): t ELSEOF (boolt): t
ELSE i

ESAC.

FN EQUIV - (bool: a b) -> bool:
CASE (ab) OF (tt): t, (f,t): f. (t,f): f, (f,f): t ELSE i ESAC.

FN XOR - (bool: a b) -> bool:
CASE (ab) OF (tt): f, (f,t): t, (t,f): t, (f,f): f ELSE i ESAC.

FN PASS - (bool: a) -> bool:
CASE a OF f:f, t:t ELSE i ESAC.

* El 4

~JA AAAAAAAJWA;AAA A A-"AAAAA.AAAA A'.J.AJ.L"

\ ********\

\-**** - NUMERICAL OPERATIONS *****
!? **********\

INT xxmaxword - 18. \ **** Maximum length "wordn", for VAX - 18 & ****
**** 1900 - 14. If xxmaxword >- 20, logic of **** \
A V and XXFINDBL must be changed *

INT illegalnum - (1 SL xxmaxword),
unknownnum - illegalnum + 1.

TYPE num - NEW number/(O..unknownnum). \ 0 to (2**xxmaxword - 1) - legal \
\ >- (2**xxmaxword) - illegal

FN EQUAL - (num: a b) -> bool:
BEGIN FN EQU - (num: a b) -> num:

ARITH IF (a>-illegalnum) OR (b>-illegalnum)

THEN illegalnum
ELSE IF a - b THEN 1 ELSE 0 FI

FI.
OUTPUT CASE EQU(a,b) OF

number/0: f, number/l: t
ELSE i

ESAC
END.

FN PLUS - (num: a b) -> num:
ARITH IF (a + b) >- illegalnum THEN illegalnum ELSE (a + b) FI.

FN MINUS - (num: a b) -> num:
ARITH IF (a < b) OR (a >- illegalnum)

THEN illegalnum
ELSE (a - b)

FI.

FN TIMES- (num: a b) -> num:
ARITH IF (a >- illegalnum) OR (b >- illegalnum) OR

(((a SR 11) /- 0) AND ((b SR 11) /- 0))
THEN illegalnum

ELSE IF (a * b) >- illegalnum THEN illegalnum ELSE (a * b) FI
FI.

E2

LIST OPERATIONS***

TYPE boollist - mazlist~bool. k*** empty list - all "by" **

***corrupt list = all "ill **

INT xxhalflist -IF maxlist <- 16
THEN IF maxlist <- 4

THEN IF maxlist <- 2 THEN 1 ELSE 2 Fl
ELSE IF maxlist <- 8 THEN 4 ELSE 8 Fl

FI
ELSE IF maxlist <- 64

THEN IF maxlist <- 32 THEN 16 ELSE 32 Fl
ELSE IF maxlist <- 128 THEN 64 ELSE 128 Fl

FI
Fl.

MAC XXNORMHAC(INT n) -(boollist: a) -> boollist:
IF n-l1
THEN CASE a[maxlist] OF by: (by CONC (a[l. .(maxlist-l)])) ELSE a ESAC
ELSE XXNORMOMAC(n SR 1)

(CASE a[((maxlist+l)-n). .maxlist] OF

ELSE a
ESAC

Fl.

FN XXNORM -(boollist: a) ->boollist: XXNOP.MMAC(xxhalflist) a.

MAC XXUNNORMMAC(INT n) - (boollist: a) -> boollist:
IF n - 1
THEN CASE arl] OF by: ((a[2. .maxlist]) CONC by) ELSE a ESAC

ELSE XXUNNORMMAC(n SR 1)
(CASE a[l. .n] OF

[ri]bv: ((a[(n+l). .maxlist]) CONO ([nlbv))
ELSE a

ESAC

FI.

FN XXUNNORM -(boollist: a) -> boollist: XXUNNORMMAC(xxhalflist) a.

E3

AA......A.AALAJi.J.CONS, HiD, TL and NULL ~~~ A . A

FN CONS - (bool: a, boollist: b) -> boollist:
* CASE b[maxlist] OF

by: XXUNNORM(((XXNORM b)[2. .maxlist]) CONC (PASS a))
ELSE (maxlist]i

ESAC.

FN HD -(boollist: a) ->bool: PASS (XXNORM a)[maxlist].

FN TL -(boollist: a) ->boollist:
CASE aOF -

[maxlist]bv: (maxlistli,

[maxlist]x: [maxlist]i,
[maxlist]i: (maxlist]i

ELSE XXUNNORM(bv CONC ((XXNORM a)[l. .(maxlist-l)]))
ESAC.

FN NULL -(boollist: a) -> bool:
CASE a OF

[maxlist]bv: t,
imaxlist)x: 1,

ELSE f
ESAC.

AAA~,~* macros/functions for'EL and SEG ***********

FN XXVALIDEL -(num: a) ->num:

ARITH IF a > (maxlist 1) THEN illegalnum, ELSE a FI.

FN XXNEEDED - (num: level mask) ->nuin:

ARITH IF level - mask
THEN illegalnum \last required shift
ELSE level IAND mask \shift required 0 or not 0\

FI.

FN XXDIV2 -(num: mask) -> num: ARITH mask SR 1.

FN XXMASKBIT -(num: level mask) -> num: ARITH level IAND (INOT mask).

E4

SMAC XXSRNHAC(INT n) - (boollist: a, num: level mask) -> boollist:
BEGIN LET cn - ZXNEEDED(level, mask).
OUTPUT

IF n - 1
THEN ((a[2. .maxlist]) CONC by)
ELSE CASE cn OF

ELSE XXSRNMAC~n SR 1)
(CASE cn OF

number/O: a
ELSE ((a[(n+l). .maxlist]) CONC ([nlbv))

ESAC,
XXMASKBIT(level, mask), XXDIV2 mask

ESAC
FI

END.

FN XXSRN - (num: level, boollist: b) ->boollist:
CASE XXVALIDEL level OF

number/illegalnum: [maxlist] 1,
number/O: b

ELSE XXSRNMAC(xxhalflist)(b, level, number/xxhalflist)
ESAC. -

FN XXFINDMASK -(num: from to) -> boollist:
BEGIN FN XXSEGLENGTH - (num: from to) -> num:

ARITH IF (to < from) OR (to >- illegalnum) OR
(((to - from) + 1) > maxlist)

THEN illegalnum
ELSE ((maxlist + from) - to - 1)

FI.
OUTPUT XXSRN(XXSEGLENGTH(from~to). [maxlistlt)

END.

A~AAA~AAAAAAA.A.J.***EL and SEG ...AAA.AJAA..... J

FN EL -(num: a, boollist: b) -> bool: PASS((XXSRN(a, b))[1])

FN SEG - ([21num: segsel, boollist: b) -> boollist:
BEGIN LET moveright - XXSRN(segsel~l1. b),

findmask - XXFINDMASK(segseljl], segsel[2]).
OUTPUT [INT k-l. .maxlist]CASE findmask[k] OF

t: PASS moverightik]
ELSE findmask~k]

ESAC
END.

E5

'Ja -WT -7 *rrr -w_ dr ~nrr C :i

AAA.AA..AA.J.AAJAJ......A V

FN XXVMO - (num: lsb msb shift) ->num:

ARITH IF msb >- illegalnum
THEN iliegalnum
ELSE IF ((msb SL shift) + isb) >- illegainum

THEN illegainun
ELSE ((msb SL shift) + lab)

Fl
F'.

PH XXVH1 - (bool: a) -> num:
CASE a OF

f: number/O, t: number/i, by: number/O
ELSE number/illegainum

ESAC.

FN XXVM2 -([2bool: a) -> num:
XXVMO(XXVM1 a(l], XXVHI. a[2], number/i).

FN XXVM4 - ((4]bool: a) -> num:
XXVMO(XXVM2 a[1. .2], XXVH2 a[3. .4], number/2).

FN XXVM8 =([8]bool: a) .-> num:
XXVMO(XXV44 all. .4], XXVM4 a[5- 8], number/4).

FN XXVM20 = C20]bool: -a) -> nurn:
XXVMO(XXVMO(XXVM8 ati. .8], XXVM~8 a,9-1.61, number/B),

XXVM4 a[17..20],
number/i 6

FN V - (boollist: a) -> num:
BEGIN LET paddedlist - a CONC [20]bv.

OUTPUT CASE a OF
[maxlist]bv: number/illegainum

ELSE CASE paddediist[21. .(maxiist+20)] OF
[maxiist](f I by): XXVM2O(paddediist[l. .20])

ELSE number/iliegalnum
ESAC

END.
EA

E6

.LJAAA.L..L.~~ convert nuin to list of bools AJ.AA.LJJALAL.

FN XXLSB - (num: a bits) ->num: ARITH a lAND ((1 SL bits) - 1).
FNMXXMSB - (num: a bits) ->num: ARITH (a SR bits) IAND ((1 SL bits)-1.

FN XXFIWDB2 - (num: a) -> [2]bool:
CASE a OF

number/O: (f,f), number/i: (t~f), number/2: (f~t), number/3: (t,t)

ESAC.

FN XXFINDB4 - (num: a) -> [4]bool:
XXFINDB2(XXLSB(a, number/2)) CONC XXFINDB2(XUISB(a, number/2)).

FN XXFINDBB - (num: a) -> [8]bool:
XXFINDB4(XXLSB(a, number/4)) CONC XXFINDB4(XXHSB(a, nuznber/4)).

FN XXFINDB16 - (num: a) -> [16]bool:
XXFINDB8(XXLSB(a, number/B)) CONC XXFINDBB (XXMSB(a, number/B)).

FM XXFINDB32 - (num: a) -> [32]bool:
I,, XXFINDB16(XXLSB(a, number/16)) CONC XXFINDBl6(XXMSB(a, number/16)).

U E7

***MACRO FUNCTIONS, available for any value of (n) **

WORDn, VALn, BITSn, NOTn, ANDn. ORn **

MAC WORDN(INT n) - (num: a) -> [n]bool:
BEGIN LET rovconv - CASE a OF

nuinber/illegalnum: [3211,
nuznber/unknownnum: [32]1i

ELSE XXFINDB32 a
ESAC.

g OUTPUT CASE rowconv[(n+l). .32] OF [(32.-n)]f: rowconv[l. .n] ELSE [n]i ESAC
END.

MAC BITSN(INT n) - ([n]bool: a) -> boollist:
BEGIN LET amod - [INT k-i. .n]PASS a~k].

OUTPUT amod CONC ([maxlist-n]bv)
END.

MAC VALN(INT n) - ([n]bool: a) -> num:

BEGIN LET amod - [INT k-I. .nIPASS alk].
OUTPUT V(amod CONC ([maxlist-n]bv))

END.

MAC NOTN(INT n) - ([n]bool: a) -> [n~bool: [INT k-i. .n]NOT a~k].

MAC ANDN(INT n) - (Ln]bool: a b) -> [nibool: [INT k-i. .n]AND(a~k], blk]).

MAC ORN(INT n) - ([nibool: a b) ->[nibool: [INT k-i. .n] OR(a[k], bik]).

MAC WORDEQUN(INT n) - ([n]booi: a b) -> bool:
BEGIN LET equivrow - lINT k-i. .n] EQUIV(afk], b[k]).

OUTPUT CASE equivrow OF
[nit: t

- ELSEOF [n](t i 8: i
ELSE f

~ '~*ESAC

END.

E8

Annex F: The auxilary library in ELLA

***NUMERICAL OPERATIONS A.AAJ...J..AAJJA

FN DIVIDE - (num: a b) -> num:
ARITH IF (a >- illegalnum) OR (b >- illegalnum) OR (b -0)

THEN illegalnum
ELSE a %b

FI.

FN REMAINDER -(nurn: a b) ->num:
ARITH IF (a >- illegalnum) OR (b >- illegalnum) OR (b -0)

THEN illegalnum
ELSE a - ((a %b) *b)

Fl.

FN TESTCOUNT -(bool: dummy) ->num:

BEGIN FN NUMDEL - (num) -> num: DELAY(nuinber/O, 1).
F N INCNUM - (num: a) -> num:

ARITH IF a -(illegalnum - 1) THEN 0 ELSE a + 1 Fl.
MAKE NUMDEL: nd.
JOIN INCNUM(nd) ->nd.

OUTPUT nd
END.

FN TESTWORD - (num: a) ->[xxmaxvord]bool: (XXFINDB32 a)[l. .xxmaxword].

MAC REPWORDN(INT n) - ([n]bool: a) -> [nibool: [INT k-l. .n] a[(n+l)-k].

* **** ~COMPARISON OPERATIONS *********************

TYPE result - NEW(ok Ixxxwrongxxx I xxxbadspec).

TN COMPBOOL - (bool: spec caic) ->result:

CASE (spec, caic) OF
'.(bv, bool): xxxbadspec,
'4C , bool): xxxbadspec,

(x, bool): ok,
(oc, oc): ok,
(Z, z): ok,
Cq. q): ok,
(t, t): ok,
(f, f): ok

ELSE xxxvrongxxx

ESAC.

F].

FN COMPNUM - (num: spec calc) -> result:
CASE spec OF

number/illegalnum: xxxbadspec,
number/unknownnum: ok

ELSE CASE EQUAL(spec, calc) OF t: ok ELSE xxxwrongxxx ESAC
ESAC.

FN COMPJOIN - (result: a b) -> result:
CASE (ab) OF

(ok,ok): ok,
(xxxbadspec, result): xxxbadspec

ELSEOF (result, xxxbadspec): xxxbadspec
ELSE xxxwrongxxx

ESAC.-

MAC COMPWORDN(INT n) - ((n]bool: spec calc) -> result:
BEGIN LET testrow - [INT k-l..n]COMPBOOL(spec[k], calcfk]).

OUTPUT CASE testrow OF
[n]ok: ok

ELSEOF [n](ok I xxxwrongxxx): xxxwrongxxx
ELSE xxxbadspec.:: .ESAC

END.

**** LATCH OPERATIONS *...***.***..AA A...... .

TYPE latchmode - NEW(verify I simulate).
TYPE testselect - NEW(all I failonly).

S., FN XXDELBOOL - (bool) -> bool: DELAY(i, 1).

FN LATCHBOOL - (bool: data enable, latchmode: mode) -> bool:
BEGIN MAKE XXDELBOOL: delop.

LET nochange - CASE mode OF verify: q, simulate: delop ESAC.
LET datasel - CASE enable OF

f: nochange,
t: CASE data OF

t:t, f:f, x:x, q: nochange
ELSE i

ESAC
ELSE i

ESAC.
JOIN datasel -> delop.

OUTPUT CASE mode OF verify: datasel, simulate: delop ESAC
END.

FN REGBOOL - (bool: data enable, latchmode: mode) -> [2]bool:
BEGIN LET trueop - ATCHBOOL(data, enable, mode).K;D OUTPUT (trueop, CASE trueop OF t:f, f:t ELSE trueop ESAC)

44 F2

MAC LATCHVORDN(INT n) -([n]bool: data, bool: enable, latchmode: mode) -

[nibool:
[INT k-i. .n] LATCHBOOL(data[k], enable, mode).

A MAC REGWORDN(INT n) -([n]bool: data, bool: enable, latchmode: mode) -
[2] [n]bool:

BEGIN LET oprow - [INT k-i. .n] REGBOOL(data(k], enable, mode).
LET trueop - [INT k-i. .n] oprov[k][l].
LET invop - [INT k-i. .n] oprow[k][2).
OUTPUT (trueop, invop)

END.

**DISPLAY OPERATIONSAAA AAA... AAAA.,~kA

FN DISPLAYRES - (result: data, num: testnum, testseiect: level) -

(num, result, bool):
BEGIN FN DELRES - (num,result) -> (num,result): DELAY((number/O,ok), 1).

MAKE DELRES: delop.
LET -op - CASE level OF

all: (testnum, data, t),

failonly: CASE data OF
-c ok: (delopil], delop[2], f)

ELSE (testnum, data, t)

ESAC
ESAC.

JOIN (opll],op[2]) ->delop.

OUTPUT op
END.

FN DISPLAYBOOL - (bool: data control) ->bool:

BEGIN MAKE XXDELBOOL: delop.
% LET datasel -CASE control OF f: delop, t: data ELSE i ESAC.

JOIN datasel ->delop.

OUTPUT datasel
END.

FN DISPLAYNUM - (num: data, bool: control) ->num:

BEGIN FN DELNUK - (num) -> num: DELAY(number/illegalnun, 1).
MAKE DELNUM: delop.
LET datasel -CASE control OF

f: delop, t: data
ELSE number/illegalnum

ESAC.
JOIN datasel ->delop.

OUTPUT datasel

END.

h*

IF

MAC DISPLAYVORDN(INT n) - ([n]bool: data, bool: control) -> [n]bool:

BEGIN FN DELWN - (Inibool) -> [n~bool: DELAY((n]i, 1).
MAKE DELWN: delop.
LET datasel -CASE control OF f: delop, t: data ELSE [n]i ESAC.
JOIN datasel ->delop.

OUTPUT datasel
* - END.

* MAC SELECTN(INT n) - ((n]bool: row, num: element) ->bool:

(XXSRN(element, row CONC ([maxlist-n]i)))[l].

***TRISTATE OPERATIONS ***AAAA...AAAAALAAAAAAA

FN BOOLTRI - (bool: data enable) -> bool:
* CASE enable OF f: z, t: PASS data ELSE i ESAC.

FN JOINTRI - (bool: a b) -> bool:
9CASE (a,b) OF (z,z): z, (z,t): t, (z~f): f, (t,z): t, (f,z): f ELSE i ESAC.

MAC WORDNTRI(INT n) - ([n]bool: data, bool: enable) -> [nibool:
CASE enable OF f: [n]z, t: [INT k-i. .n]PASS data[k] ELSE [n]i ESAC.

MAC JOINTRIN(INT ni (4n~bool: a b) -> ijbooli
[INT k-l..n] JOINTRI(a[k], b[k]).

**** OPEN COLLECTOR OPERATIONS

FN OCOUTPUT - (bool: a) -> booi: CASE a OF f: f, t: oc ELSE i ESAC.

FN WIREDOR - (bool: a b) -> bool:
CASE (a,b) OF (oc, oc): oc, (f, bool): f ELSEOF (bool,f): f ELSE £ ESAC.

FN PULLUP -(bool: a) ->bool: CASE a OF f: f, oc: t ELSE £ ESAC.

MAC OCWORDN(INT n) - ([njbool: a) -> [nibool: (INT k-i .n]OCOUTPUT atk].

MAC WIREDORN(INT n) - ((n]bool: a b) -> [nibool: [INT k-i. .n]WIREDOR(a[k],b[kJ).

MAC PULLUPN(INT n) -([nibool: a) ->[n~bool: LINT k-l. .n]PULLUP alk].

F4

Annex G: An example of verification of a combinatorial circuit

G.1 The specification

The example to be verified is based on the four input multiplexer
described in the main body of the paper (see section 3). However, to show
the effect of coversion from LCF-LSM to ELLA, the specification has been
changed slightly, so the selector (which was two 'bool's called selectO
and selectl) is now a single word2.

In LCF-LSM the specification for the required multiplexer is:-

SPEC :(bool#bool#bool#bool~word2) -> bool
SPEC (a, b, c, d, selector) -

LET selectval - VAL2 selector IN (numerical equivalent of selector)
(selectval - 0 -> a
selectval - 1 -> b
selectval - 2 ->cd (by implication selectval - 3)

)

This can be converted into ELLA as follows:-
.7

TYPE word2 - [2]bool.

FN VAL2 - (word2: a) -> num: VALN(2) a.

FN SPEC - (bool: a b c d, word2: selector) -> bool:
BEGIN LET selectval - VAL2 selector.

OUTPUT CASE selectval OF
number/O: PASS a,
number/l: PASS b,
number/2: PASS c,
number/3: PASS d

ELSE i
_ESAC

END.

Notice the explicit declaration of the type "word2" and the function
"VAL2" created by the macro function "VALN". Other than the lexical
differences, the two main changes between the LCF-LSM version and that in
ELLA are the need to apply PASS to each of the delivered values (for the
reason explained in section 5 of the main body of the paper) and the need
for an explicit "ELSE" limb to the case clause, as if "selectval" is not
number/0, number/l or number/2 it cannot be assumed to be number/3 as it
was in LCF-LSM (because of the possiblities of illegal or indeterminate
values).

G.2 The implementation

The implementation is the same as described in the main body of the
paper (see section 3 and Fig 1). Note that the functionality of the basic

logic elements is described in terms of the LCF-LSM library functions

detailed in Annex C.

01

FN INV - (bool: a) -> bool: NOT a.
FN NAND3 - (bool: a b c) -> bool: NOT(a AND b AND c).
FN NAND4 - (bool: a b c d) -> bool: NOT(a AND b AND c AND d).

FN CIRCUIT - (bool: a b c d, word2: selector) -> bool:
BEGIN LET selObar - INV selector[l],

sellbar - INV selector[2],
sel0buf - INV selObar,
sellbuf - INV sellbar.

OUTPUT NAND4(NAND3(a, selObar, sellbar),
NAND3(b, sel0buf, sellbar),
NAND3(c, selObar, sellbuf),

. NAND3(d, sel0buf, sellbuf)

END.

G.3 The test vectors

"* - As explained in section 3 of the main body of the paper, eight tests
are required to prove correspondance between the specification and
implementation of the multiplexer. The function to generate these tests is
shown below. As with the function TESTCOUNT (see D.2.1), the function
TESTVECTORS requires a dummy input parameter, as "VOID -> " is not an
allowed function type in ELLA.

The value "testnum", is a 'num' with values in the range 0 to 7. It is
used as the test number, and is the first member of the structure
delivered from TESTVECTORS. The value "testrow" is a structure of type
(bool,bool,bool,boolword2) and is the required input for both SPEC and
CIRCUIT. The value of "testrow" is selected by "testnum". Note that tests
0 and 1 test the first input of the multiplexer (with the other thsrae
marked as irrelevant, "x"), tests 2 and 3 the second input, etc. Also
notice the use of REPWORD2 (see D.3) to create a 'word2' from a pair of
'bool's.

FN TESTVECTORS - (bool: dummy) -> (num, (bool,bool~bool,bool,word2)):
BEGIN FN REPWORD2 - (word2: a) -> word2: REPWORDN(2) a.

LET testnum = REMAINDER(TESTCOUNT dummy, number/8),
testrow - CASE testnum OF

number/O: (f, x, x, x, REPWORD2(ff)).
number/l: (t, x, x, x, REPWORD2(f,f)),

number/2: (x, f, x, x, REPWORD2(f,t)),
.4. number/3: (x, t, x, x, REPWORD2(f,t)),

number/4: (x, x, f. x, REPWORD2(t,f)),
number/5: (x, x, t, x, REPWORD2(t,f)),

number/6: (x, x, x, f, REPWORD2(t,t)),number/6: (x, x, x, t, REPWORD2(t,t))

ESAC.
OUTPUT (testnum, testrow)

END.

G2

G.4 The comparison function

As SPEC and CIRCUIT deliver a single lbool', the function COMPARE (as
described in section 6.2 of the main paper) can be achieved simply by use
of COMPBOOL.

FN COMPARE - (boof: spec circuit) -> result: COMPBOOL(spec, circuit).

G.5 The display function

It was decided that in addition to the test number and the result of
the comparison, the values delivered by SPEC and CIRCUIT would be printed.
The function DISPLAY is therefore as shown below, as described in section
6.3 of the main paper.

FN DISPLAY - (testselect: mode, result: data, num: testnum,
bool: spec circuit)

-> (num, bool, bool, result)
BEGIN LET dr - DISPLAYRES(data, testnum, mode).

OUTPUT (dr[l],

DISPLAYBOOL(spec, dr[3]),
4 DISPLAYBOOL(circuit, dr[3]),

dr[2]
,:)

END.

G.6 The complete test program

The five functions, described above, are "Joined together" into a
single function, with the test vector from TESTVECTORS applied to SPEC and
CIRCUIT, the results from these being compared, and the result from
DISPLAY being delivered to the simulator (cf Fig 2). Note that this
function has a single input parameter (to be controlled by the simulator),
which is the 'testselect' mode required by the DISPLAY function.

FN RUNTESTS - (testselect: mode) -> (num, bool, bool, result):
BEGIN LET testvectors - TESTVECTORS x,

spec - SPEC testvectors[2],
circuit - CIRCUIT testvectors[2],
compare - COMPARE(spec, circuit).

OUTPUT DISPLAY(mode, compare, testvectors[l], spec, circuit)
END.

The results of running these functions is shown below (for mode - all)
proving that the circuit is a valid implementation of the specification.

RUNTESTS - number/O f f ok (test-number, spec, circuit, result)
RUNTESTS - number/l t t ok
RUNTESTS - number/2 f f ok
RUNTESTS - number/3 t t ok
RUNTESTS - number/4 f f ok
RUNTESTS - number/5 t t ok
RUNTESTS - number/6 f f ok
RUNTESTS - number/7 t t ok

G3

Annex H: An example of verification of a circuit containing memory

H.1 The requirement

The example to be described is based on the specification of a six-bit
counter. Informally, the counter is to have four modes of operation,
determined by a pair of input signals called "func". The effects are to be
as follows:-

func - 0 : The current contents of the counter, "count" remains unchanged
func - 1 : counter loaded from a six-bit input bus, called "loadin"
func - 2 : count :- count + 1
func - 3-: count :- count + 2

In addition to this requirement, there is also to be a signal from the
counter which indicates when the content of the counter is 63 (ie all bits
true), see Fig 6 in main body of paper. This can be expressed formally in
LCF-LSM as:-

NEXTSTATE :(word6#vord6#vord2) -> word6 (find next state of count)
NEXTSTATE (countloadin,func) -

LET funcnum - VAL2 func IN
LET value - VAL6 count IN
(funcnum - 0 -> count
funcnum - 1 -> loadin I
funcnum = 2 -> (value - 63 -> WORD6 0 I WORD6(value + 1))

(value - 62-> WORD6 01
value - 63-> WORD6 11

WORD6(value + 2)
.-)

•)

COUNT63 :(word6) -> bool (indicate when current state - 63)
COUNT63 (count) -

(count - #111111)

SPEC :(word6*word6#word2) -> (word6#bool) (combine above functions)
SPEC (count,loadin,func) -

((NEXTSTATE count loadin func), (COUNT63 count))

Note that when addition is performed, the effect of the finite word
length has to be considered. So in the limb of NEXTSTATE that finds the
next value of 'count' when "funcnum - 2", the special case of the current, state of the counter being 63 is explicity handled (as 64 cannot be
represented by a six-bit value), while for all other initial states of the

counter the result is "value + 1". Also notice that the specification
of COUNT63 could have been written as "((VAL6 count) - 63)", and that this
representation is identical to the function as written.

Hl

H.2 The ELLA specification

The LCF-LSM specification presented above can be translated into the
following ELLA form:-

TYPE vord2 - [2]bool,
vord6 - [61booi.

FN VAL2 - (word2: a) -> num: VALN(2) a.
FN VAL6 - (word6: a) ->num: VALN(6) a.
FN VORD6 - (num: a) ->word6: WORDN(6 a.

FN STATELATCH - (word6: data, latchmode: mode) -> word6:
LATCHWORDN(6)(data, t, mode).

FN NEXTSTATE -(word6: count loadin, word2: func, latchmode: mode) -> ord6:
BEGIN LET funcnum - VAL2 func.

,~ .LET value - VAL6 count.
LET nextitate - CASE funcnum OF

number/O: [61q,
number/i: loadin,
nuniber/2: CASE value OF

number/63: WORD6 number/O
ELSE WORD6(value PLUS number/i)

ESAC,
number/3: CASE value OF

number/63: VORD6 number/i,
number/62: VORD6 number/O

ELSE WORD6(value PLUS number/2)
ESAC

ELSE [6]1
ESAC.

OUTPUT STATELATCH(nextstate, mode)
END.

FN COUNT63 - (vord6: count) -> bool: WORDEQUN(6)(count, (t,t,t,t,t,t))

FN SPEC - ((word6,word6,word2): signals, latchmode: mode) -> (word6,bool):
BEGIN LET count - signals[l].

LET loadin - signals[2].
LET func - signals[3].
OUTPUT (NEXTSTATE(count, loadin, func, mode), COUNT63 count)

END.

J6

H12

There are a number of subtleties in the translation from LCF-LS1 to
ELIA that were not covered in the combinatorial example in Annex G, that
need to be expanded.

L) The LCF-LSM description ignores the difference between the COUNT63
output (which is valid for the current state of the system) and the
NEXTSTATE output (which is the next state of 'count'). In the ELLA
version the function STATE LATCH is introduced to indicate that
NEXTSTATE defines the next state of the 'count', ie binds the memory
shown in Fig 6.b to the NEXTSTATE function. The function STATE LATCH
is generated from the generic function LATCHWORD(n). This means that
there is a requirement for a 'latchmode' input to NEXT STATE (not
present in the LCF-LSM version). Note that, as NEXTSTATE defines
the next state ('word6' value) of 'count' under all circumstances,
the 'enable' input of the LATCHWORD6 in STATELATCH can be fixed as
't'.

ii) The values delivered by the LCF-LSM version of NEXTSTATE and its
ELLA equivalent, when "funcnum - 0", should be compared. In the
LCF-LSM version the delivered value is "count", indicating that the
count does not change. In the ELLA version, this is indicated by a
delivered value of "[6]q".

iii) Note that in the description of the requirement, H.1, it was said
that the function COUNT63 could be specified (with identical
effects) as either:-

count - #111111 or (VAL6 count) - 63

The ELLA translations of these have slightly different
interpretations. In the second case, when the requirement is
expressed in terms of comparisons between 'num's, if any of the
bits of 'count' are illegal values (not 't' or 'f') the result is
indeterminate (which is not allowed in a specification), whilst
in the first case provided all the bits of 'count' are 't', or
at least one is 'f', the result of the comparison is determinate.
This means that when the implementation of this part of the
requirement is tested (see H.6) only seven tests are needed, whilst
if the second form of the expression had been used, all 64 legal
values of (VAL6 count) would need to be examined.

iv) In the final specification function SPEC, a 'latchmode' value is
required, to be passed on to NEXTSTATE. In order to simplify the
testing functions RUNTESTS (see H.4, H.5 and H.6), the inputs to
SPEC that will have corresponding values in the implementation
function, CIRCUIT, are grouped into a single structure of type
"(word6,word6,word2)", the 'latchmode' input to SPEC is a
separate formal parameter.

H3
U.

-. -- , w.,rr ir- 'rr' mr.- 4 rJF'y.i~ - ~u*A w iF.- p

H.3 The implementation

The circuit that has been produced to meet the above requirement is
*shown in Fig H.l. The description of this diagram in ELLA follows. Note

that as the circuit description will only ever be used for verification,
the latch function, LATCH, doesn't need a 'latchmode' input, but can be
permanently in verify mode, and that a function MPLXBIT is used to
describe a circuit function that is repeated many times.

FN INV - (bool: a) ->bool: NOT a.
FN NOR2 - (bool: a b) ->bool: NOT(a OR b).
FN NAND2 - (bool: a b) ->bool: NOT(a AND b).

FFN NAND3 - (bool: a b c) ->bool: NOT(a AND b AND c).
4'FN NAND4 - (bool: a b c d) ->bool: NOT(a AND b AND c AND d).

FN INOR - (bool: a b) ->bool: a EQUIV b.

FN LATCH - (word6: data. bool: enable) -> vord6:
LATCHWORDN(6) (data, enable, verify).

FN CIRCUIT - (word6: count loadin, word2: func) -> (word6.bool):
BEGIN FN MPLXBIT - (bool: countn cbn loadn aelload selcount) ->bool:

NAND2(NAND2 (selload, loadn),
NAND2 (selcount, XNOR(countn, cbn))

LET selload - INV func[2),
selcount - INV selload,
notfuncO - INV funcil],
funcObuf - INV notfuncO.

LET cO - MPLXBIT(count[l], funcObuf, loadinil], selload, selcount).

LET carrylb - NOR2(count~l), funcObuf).
LET carryl - INV carrylb.

LET cl - MPLXBIT(count[2], carrylb, loadin[2], selload, selcount).
LET c2 - MPLXBIT(count[3]. NAND2(carryl, count[2]),

loadin[3], selload, selcountA

LET c3 -MPLXBIT(count[4], NAND3(carryl, count[21, count[3]),
loadinf 4], selload, selcount

LET carry4b - NAND4(carryl, count[2], count[3]. count[4]).
LET carry5b - NAND2(INV carry4b, count[5]).

LET c4 - MPLXBIT(count[5], carry4b, loadin[5], selload, selcount).
LET c5 - MPLXBIT(count[6], carry5b, loadin[6], selload, selcount).

LET count63 -NOR2(NAND2(count~lJ, count[61), carry5b).I
OUTPUT (LATCH((cO, cl, c2, c3, c4, c5), NAND2(selload, notfuncO)),

count63

END.

H4

..

H.4 Verifying the "count" output. "func" equals 0, 2 or 3

Verification of the above circuit can be divided into two main parts.
The first of these is to show that the next value of 'count' vill be
correct, the second, to show the value indicating 'count' equals 63 is also
correct.

The first of these is further subdivided, depending upon vhether the
next value of 'count' needs to be treated as a single 'vord6', or as six
separate bits. This section will describe the tests on 'count' treated as
a single 'word6'.

When arithmetic operations are involved, it must be shown that all
possible values give the correct result. That is for 'func' equal to 2 or 3
all 64 possible value of 'count' must be tried ('loadin' being irrelevant,
ie "[6]x"). A single test is also required for 'func' equal to 0, to show
both SPEC and CIRCUIT give "[6]q". The following functions provide the
appropriate test vectors and perform the tests, in the same style as
described in Annex G. Note that the test vectors 0 to 63 test 'func' - 2
('count' - 0 to 63), vectors 64 to 127 test 'func' - 3 ('count' - 0 to 63),
and vector 128 tests 'func' - 0.4
FN TESTVECTORS - (bool: dummy) -> (num, (word6,word6,word2)):

BEGIN LET testnum - REMAINDER(TESTCOUNT dummy, number/129),
testrow - TESTWORD testnum,

testvector - CASE testrov[7..81 OF
(f,f): (testrow[l..6], [6]x, (f,t)),
(t,f): (testrowil..63, [6]x, (t,t))

ELSE ([6]x, [6]x, (f,f))
ESAC.

OUTPUT (testnum, testvector)
END.

FN COMPARE - (word6: spec circuit) -> result: COMPWORDN(6)(spec, circuit).

FN DISPLAY - (testselect: mode, result: data, num: testnum.
word6: spec circuit) -> (num, word6, word6, result):

BEGIN FN DISPLAYWORD6 - (word6: w6data, bool: control) -> word6:
DISPLAYWORDN(6)(w6data, control).

LET dr - DISPLAYRES(data, testnum, mode).
OUTPUT (dr[l], DISPLAYWORD6(spec, dr[3]),

DISPLAYWORD6(circuit, dr[3)),
dr[2]

)
END.

FN RUNTESTS - (testselect: mode) -> (num, word6, vord6, result):
BEGIN LET testvectors - TESTVECTORS x.

LET spec - (SPEC(testvectors[2], verify))[1].
LET circuit - (CIRCUIT testvectors[2])[l.
LET compare - COMPARE(spec, circuit).
OUTPUT DISPLAY(mode, compare, testvectors[l, spec, circuit)

END.

H5 0

COUNT 63

I'L

MS
C5D0 S

ES B C

~1>

FIG. D. ONE ICI

EN

DOCURENT CONTROL SHEET

Overall security classification of shoot Unclassified

..

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (5)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

5. Originator's Code (if 6. Originator (Corporate Author) lame and Location
known) Royal Signals & Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) lame and Location
Code (if known)

7. Title Formal proof of correspondence between the specification of a
hardware module and its gate level implementation.

-" 7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title, Place and date of conference

B. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date pp. ref.
PYGOTT C H

' 11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords) -

4

continue on separate piece of paper

Abbtract
The growing use of digital circuits in safety critical environments and the
cost of correcting mistakes in large scale integrated circuits, both lead
to a requirement for a high level of confidence in the correctness of the
design of micro-electronic elements.

This paper describes a novel application of a general hardware description
language that enables the Implementation of a synchronous circuit to be
checked exhaustively against a high level, implementation independent,specification of its functionality (originally written in a formalism such
as first order predicate calculus). The technique avoids the cost, in

/simulation

I:.

DOCUMENT CONTOL SHEET (contd)

simulation time, usually associated with exhaustive checking.

The method is illustrated by examples written in the design and description
.. language ELLA: no prior knowledge of ELLA is assumed. Included in the

annexes to this paper are a library of ELLA functions that provide those

facilities required for the validation of circuits, and the translation of

specifications written in the first order predicate calculus language

LCF-LSM into ELLA.

4.

IC

2l

